【模板】BM + CH(线性递推式的求解,常系数齐次线性递推)
这里所有的内容都将有关于一个线性递推:
$f_{n} = \sum\limits_{i = 1}^{k} a_{i} * f_{n - i}$,其中$f_{0}, f_{1}, ... , f_{k - 1}$是已知的。
BM是用于求解线性递推式的工具,传入一个序列,会返回一个合法的线性递推式,一个$vector$,其中第$i$项表示上式的$a_{i + 1}$。
CH用于快速求解常系数齐次线性递推的第$n$项,我们先会求出一个特征多项式$g$,$g$的第$k$项是$1$,其余项中第$k - i$项是$-a_{i}$。然后可以得到$c = x^{n} \; mod \; g$这么一个多项式,最后的答案就是$\sum\limits_{i = 0}^{k - 1} c_{i} * f_{i}$,这里用$c_{i}$表示$c$中第$i$项的系数。
其实这里只是想给出两者的板子,素质二连:
namespace BM{
#define pb push_back
#define SZ(x) ((int)x.size())
#define REP(i, a, b) for (int i = a; i < b; ++i)
LL Pow(LL x, LL b) {
LL re = ;
x %= MOD, assert(b >= );
for (; b; b >>= , x = x * x % MOD)
if (b & ) re = re * x % MOD;
return re;
}
VI Bm(VI x) {
VI ls, cur;
int pn = , lf, ld;
REP(i, , SZ(x)) {
LL t = -x[i] % MOD;
REP(j, , SZ(cur))
t = (t + x[i - j - ] * (LL)cur[j]) % MOD;
if (!t) continue;
if (cur.empty()) {
cur.resize(i + );
lf = i, ld = t;
continue;
}
LL k = -t * Pow(ld, MOD - ) % MOD;
VI c(i - lf - );
c.pb(-k);
REP(j, , SZ(ls)) c.pb(ls[j] * k % MOD);
if (c.size() < cur.size())
c.resize(cur.size());
REP(j, , SZ(cur))
c[j] = (c[j] + cur[j]) % MOD;
if (i - lf + SZ(ls) >= SZ(cur))
ls = cur, lf = i, ld = t;
cur = c;
}
VI &o = cur;
REP(i, , SZ(o))
o[i] = (o[i] % MOD + MOD) % MOD;
return o;
}
}
namespace CH {
#define SZ(x) ((int)x.size())
VI g;
int k;
inline void Ad(int &a, int b) {
if ((a += b) >= MOD) a -= MOD;
}
VI Mul(VI a, VI b) {
VI c;
assert(SZ(a) <= k && SZ(b) <= k);
c.resize(SZ(a) + SZ(b) - );
for (int i = ; i < SZ(a); ++i)
for (int j = ; j < SZ(b); ++j)
Ad(c[i + j], (LL)a[i] * b[j] % MOD);
for (int i = SZ(c) - ; i >= k; --i)
for (int j = ; j <= k; ++j)
Ad(c[i - k + j], MOD - (LL)c[i] * g[j] % MOD);
c.resize(k);
return c;
}
VI Solve(VI a, int n) {
k = SZ(a);
g.resize(k + , );
for (int i = ; i <= k; ++i)
g[k - i] = (MOD - a[i - ]) % MOD;
VI re(, ), x(, );
x[] = ;
for (; n; n >>= , x = Mul(x, x))
if (n & ) re = Mul(re, x);
return re;
}
}
【模板】BM + CH(线性递推式的求解,常系数齐次线性递推)的更多相关文章
- 【瞎讲】 Cayley-Hamilton 常系数齐次线性递推式第n项的快速计算 (m=1e5,n=1e18)
[背诵瞎讲] Cayley-Hamilton 常系数齐次线性递推式第n项的快速计算 (m=1e5,n=1e18) 看CSP看到一题"线性递推式",不会做,去问了问zsy怎么做,他并 ...
- 【Luogu4723】线性递推(常系数齐次线性递推)
[Luogu4723]线性递推(常系数齐次线性递推) 题面 洛谷 题解 板子题QwQ,注意多项式除法那里每个多项式的系数,调了一天. #include<iostream> #include ...
- 常系数齐次线性递推 & 拉格朗日插值
常系数齐次线性递推 具体记在笔记本上了,以后可能补照片,这里稍微写一下,主要贴代码. 概述 形式: \[ h_n = a_1 h_{n-1}+a_2h_{n-2}+...+a_kh_{n-k} \] ...
- 【BZOJ4161】Shlw loves matrixI (常系数齐次线性递推)
[BZOJ4161]Shlw loves matrixI (常系数齐次线性递推) 题面 BZOJ 题解 \(k\)很小,可以直接暴力多项式乘法和取模. 然后就是常系数齐次线性递推那套理论了,戳这里 # ...
- BZOJ4161 常系数齐次线性递推
问了数竞的毛毛搞了一番也没太明白,好在代码蛮好写先记下吧. #include<bits/stdc++.h> using namespace std; ,mod=1e9+; int n,k, ...
- 【BZOJ4944】[NOI2017]泳池(线性常系数齐次递推,动态规划)
[BZOJ4944][NOI2017]泳池(线性常系数齐次递推,动态规划) 首先恰好为\(k\)很不好算,变为至少或者至多计算然后考虑容斥. 如果是至少的话,我们依然很难处理最大面积这个东西.所以考虑 ...
- Re.常系数齐次递推
前言 嗯 我之前的不知道多少天看这个的时候到底在干什么呢 为什么那么.. 可能大佬们太强的缘故 最后仔细想想思路那么的emmm 不说了 要落泪了 唔唔唔 前置 多项式求逆 多项式除法/取模 常 ...
- 2019牛客暑期多校训练营(第五场)- B generator 1 (齐次线性递推+矩阵快速幂)
题目链接:https://ac.nowcoder.com/acm/contest/885/B 题意:已知齐次线性式xn=a*xn-1+b*xn-2,已知a,b,x0,x1,求xn,n很大,n<= ...
- 线性齐次递推式快速求第n项 学习笔记
定义 若数列 \(\{a_i\}\) 满足 \(a_n=\sum_{i=1}^kf_i \times a_{n-i}\) ,则该数列为 k 阶齐次线性递推数列 可以利用多项式的知识做到 \(O(k\l ...
随机推荐
- 如何测试Oracle并行执行的并行度状况
如何测试Oracle并行执行的并行度状况: 可以通过如下的脚本,来查看要求的并行度,和实际获得的并行度. 脚本来自: http://askdba.org/weblog/forums/topic/que ...
- Canvas事件绑定
canvas事件绑定 众所周知canvas是位图,在位图里我们可以在里面画各种东西,可以是图片,可以是线条等等.那我们想给canvas里的某一张图片添加一个点击事件该怎么做到.而js只能监听到canv ...
- Codeforces 950D A Leapfrog in the Array (思维)
题目链接:A Leapfrog in the Array 题意:给出1-n的n个数,从小到大每隔一个位置放一个数.现在从大到小把数往前移动,每次把最右边的数移动最靠右边的空格处直到n个数都在前n个位置 ...
- maven 相关问题
maven 这里要更新完 不一定非要clean install 那个出问题了再弄,一般刷新一下maven仓库就行了,最好还是用自己配置的maven,不容易出问题
- Elasticsearch Java Rest Client API 整理总结 (二) —— SearchAPI
目录 引言 Search APIs Search API Search Request 可选参数 使用 SearchSourceBuilder 构建查询条件 指定排序 高亮请求 聚合请求 建议请求 R ...
- ElasticSearch入门 第九篇:实现正则表达式查询的思路
这是ElasticSearch 2.4 版本系列的第九篇: ElasticSearch入门 第一篇:Windows下安装ElasticSearch ElasticSearch入门 第二篇:集群配置 E ...
- mount命令详解及常见问题汇总
一 .mount命令(用来挂载硬盘或镜像等) 用法:mount [-t vfstype] [-o options] device dir1.-t vfstype 指定文件系统的类型,通常不必指定.mo ...
- python中列表的常用操作增删改查
1. 列表的概念,列表是一种存储大量数据的存储模型. 2. 列表的特点,列表具有索引的概念,可以通过索引操作列表中的数据.列表中的数据可以进行添加.删除.修改.查询等操作. 3. 列表的基本语法 创建 ...
- LevelDB原理解析
LevelDb有如下一些特点: 首先,LevelDb是一个持久化存储的KV系统,和Redis这种内存型的KV系统不同,LevelDb不会像Redis一样狂吃内存,而是将大部分数据存储到磁盘上. 其次, ...
- 学习 google file system 心得体会
Google File system文件系统,是在特别便宜的普通硬件设备上运行,它是一个面向大规模数据密集型运用的.可伸缩的分布式文件系统. 与传统文件相比,它认为组件失效是很平常的事件,因为GFS包 ...