Brief Solution:

强连通tarjan+压缩点+判断是否除了一个点,其它点都有出度

Detailed Solution:

把牛看成点
若一个点b能到达点a,则b认为a受欢迎
若所有的点都能到达点a,则a被所有的牛欢迎

对于某个强连通中的点,任意两点可互达,互相受欢迎
对图求强连通,并把强连通压缩成一个点
若点a向与点a不在同一个强连通集合的点b,则点a所在的集合指向点b所在的集合(边)

若一个强连通集合的点(新图的点A)能被所有的点到达,则新图所有的点能到达点A
此时新图没有环,若一个点A能被所有的点到达,则除了该点,其它点的出度都不为0(图必有没有出度的点,因为图没有环)
则能被所有的点到达的点只有一个,否则会有环,矛盾
(在没有环的条件下,图中所有的点到汇集(到达)该点)

Code:

 #include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <malloc.h>
#define maxn 10000
#define maxm 50000 struct node
{
long d;
struct node *next;
}*info[maxn+];
long x[maxm+],y[maxm+];
long dfn[maxn+],low[maxn+],stack[maxn+],num[maxn+],ans[maxn+],count=,sum=;
bool vis[maxn+],vis_stack[maxn+],next[maxn+]; long min(long a,long b)
{
if (a>b)
return b;
else
return a;
} void tarjan(long d)
{
vis[d]=false;
count++;
stack[count]=d;
dfn[d]=count;
low[d]=count;
struct node *p;
long nd,pre;
p=info[d];
while (p)
{
nd=p->d;
if (vis[nd]==true)
{
tarjan(nd);
low[d]=min(low[d],low[nd]);
}
else if (vis_stack[nd]==true)
low[d]=min(low[d],dfn[nd]);
p=p->next;
}
pre=count;
if (dfn[d]==low[d])
{
sum++;
while (d!=stack[count])
{
num[stack[count]]=sum;
vis_stack[stack[count]]=false;
count--;
}
num[stack[count]]=sum;
vis_stack[stack[count]]=false;
count--;
ans[sum]=pre-count; //count+1~pre
}
} int main()
{
long i,n,m,d;
struct node *p;
scanf("%ld%ld",&n,&m);
// for (i=1;i<=n;i++)
// info[i]=NULL;
for (i=;i<=m;i++)
{
scanf("%ld%ld",&x[i],&y[i]);
p=(struct node *) malloc (sizeof(struct node));
p->d=y[i];
p->next=info[x[i]];
info[x[i]]=p;
}
for (i=;i<=n;i++)
{
vis[i]=true;
vis_stack[i]=true;
}
for (i=;i<=n;i++)
if (vis[i]==true)
tarjan(i);
for (i=;i<=sum;i++)
next[i]=false;
for (i=;i<=m;i++)
if (num[x[i]]!=num[y[i]])
next[num[x[i]]]=true;
d=;
for (i=;i<=sum;i++)
if (next[i]==false)
{
if (d==)
d=i;
else
{
d=-;
break;
}
}
if (d==-)
printf("0\n");
else
printf("%ld\n",ans[d]);
return ;
}

haoi2006_受欢迎的牛_Solution的更多相关文章

  1. bzoj1051 [HAOI2006]受欢迎的牛

    1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4773  Solved: 2541[Submit][Sta ...

  2. bzoj 1051 (强连通) 受欢迎的牛

    题目:这里 题意: Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这 种关系是具有传递性的,如果A认为B受欢迎,B认为 ...

  3. BZOJ 1051 最受欢迎的牛 解题报告

    题目直接摆在这里! 1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4438  Solved: 2353[S ...

  4. 【BZOJ1051】1051: [HAOI2006]受欢迎的牛 tarjan求强连通分量+缩点

    Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认 ...

  5. 【bzoj1051】 [HAOI2006]受欢迎的牛 tarjan缩点判出度算点数

    [bzoj1051] [HAOI2006]受欢迎的牛 2014年1月8日7450 Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B ...

  6. 【BZOJ】1051: [HAOI2006]受欢迎的牛(tarjan)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1051 这题还好-1A了..但是前提还是看了题解的 囧.....一开始认为是并查集,oh,不行,,无法 ...

  7. BZOJ 1051 受欢迎的牛(Tarjan缩点)

    1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 4573  Solved: 2428 [Submit][S ...

  8. [bzoj1051] [HAOI2006]受欢迎的牛 (Tarjan+缩点)

    强连通图,缩点 Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这 种关系是具有传递性的,如果A认为B受欢迎,B认为C受 ...

  9. 【HAOI2006】【BZOJ1051】【p1233】最受欢迎的牛

    BZOJ难得的水题(其实是HA太弱了) 原题: 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这 种关系是具有传递性的,如果A认为B受欢迎,B ...

随机推荐

  1. [python]记录Windows下安装matplot的经历

    最近学习在看<机器学习实战>一书,第二章的时候要用到Natplotlib画图,于是便开始安装Matplotlib.本文所用到的所有安装包都可以在文末的链接中找到. 首先从Matplotli ...

  2. Scrapy爬虫入门实例

    网上关于Scracpy的讲述已经非常丰富了,而且还有大神翻译的官方文档,我就不重复造轮子了,自己写了一个小爬虫,遇到不少坑,也学到不少东西,在这里给大家分享一下,自己也做个备忘录. 主要功能就是爬取c ...

  3. 委托、多播委托(MulticastDelegate)

    委托.多播委托(MulticastDelegate) 多播委托(MulticastDelegate)继承自 Delegate ,表示多路广播委托:即,其调用列表中可以拥有多个元素的委托.实际上,我们自 ...

  4. SpringBoot日记——删除表单-Delete篇

    增删改查,我们这篇文章来介绍一下如何进行删除表单的操作,也就是我们页面中的删除按钮的功能. 下边写的可能看起来有点乱,请仔细的一步一步完成. 删除功能第一步,按钮功能实现 1. html的改变 来看, ...

  5. js获取浏览器对象的信息

    js中有一个对象叫 navigator,navigator 对象包含有关浏览器的信息.所有的浏览器都支持该对象. 其中经常用到的是 navigator.userAgent 属性,通常,它是在 navi ...

  6. Asp.Net_HttpModule的应用

    IHttpModule向实现类提供模块初始化和处置事件. IHttpModule包含兩個方法: public void Init(HttpApplication context);public voi ...

  7. 由Windows开发平台向Linux平台转移的一些想法

    从毕业到现在已经快20年了,一直在从事Windows平台上的开发工作.刚毕业那会大约是97,98年左右,工作的平台除了Windows平台还有Dos平台,因为在学校学习时,也是从Dos开始的.因此对于从 ...

  8. CentOS7安装OpenStack(Rocky版)-02.安装Keyston认证服务组件(控制节点)

    本文分享openstack的认证服务组件keystone --------------- 完美的分割线 ---------------- 2.0.keystone认证服务 1)用户与认证:用户权限与用 ...

  9. 在Mac系统下配置PHP运行环境

    概述 Mac系统对于PHP运行非常友好,我们只需要进行简单的配置便可以开始进行使用,本篇文章将一步一步地介绍Apache.PHP和MySQL的安装与配置,为开始进行开发铺好路 Apache 启动Apa ...

  10. Actual Time Cost