HDU5730 Shell Necklace


题目大意

已知连续i(1<=i<=n)个贝壳组合成一段项链的方案数a[i],求组合成包含n个贝壳的项链的总方案数。

Solution

  1. cdq分治

我们考虑最朴素的\(dp​\).

设\(f_i​\)表示包含\(i​\)个贝壳的方案数,很容易写出转移方程:

\(f_i=\sum_{j=1}^if_{i-j}×a_j\)

发现这个dp方程直接转移是\(O(n^2)\)的,要优化一下....

这个式子不就是分治FFT的式子?

直接cdq不就好了吗?

  1. 多项式求逆

考虑这个东西怎么求逆对吧.

生成函数构出来直接就可以求式子了...(坑+1)

代码实现

分治FFT

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#include<iostream>
using namespace std;
#define ll long long
#define re register
#define file(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout)
inline int gi()
{
    int f=1,sum=0;char ch=getchar();
    while(ch>'9' || ch<'0'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0' && ch<='9'){sum=(sum<<3)+(sum<<1)+ch-'0';ch=getchar();}
    return f*sum;
}
const int N=1000010,Mod=313;
const double Pi=acos(-1.0);
int a[N],dp[N],n;
struct node
{
    double x,y;
    node operator+(const node b)const{return (node){x+b.x,y+b.y};}
    node operator-(const node b)const{return (node){x-b.x,y-b.y};}
    node operator*(const node b)const{return (node){x*b.x-y*b.y,x*b.y+y*b.x};}
}A[N],B[N];
int r[N],limit;
void FFT(node *A,int type)
{
    for(int i=0;i<limit;i++)
        if(i<r[i])swap(A[i],A[r[i]]);
    for(int mid=1;mid<limit;mid<<=1)
    {
        node Root=(node){cos(Pi/mid),type*sin(Pi/mid)};
        for(int R=mid<<1,j=0;j<limit;j+=R)
        {
            node Mi=(node){1,0};
            for(int k=0;k<mid;k++,Mi=Mi*Root)
            {
                node X=A[j+k],Y=Mi*A[j+mid+k];
                A[j+k]=X+Y;
                A[j+mid+k]=X-Y;
            }
        }
    }
}
void cdq(int l,int R)
{
    if(l==R)
    {
        dp[l]=(dp[l]+a[l])%Mod;
        return;
    }
    int mid=(l+R)>>1;
    cdq(l,mid);
    limit=1;int L=0,len=R-l+1;
    while(limit<=len)limit<<=1,L++;
    for(int i=0;i<limit;i++)
        r[i]=(r[i>>1]>>1)|((i&1)<<(L-1));
    for(int i=0;i<limit;i++)A[i].x=B[i].x=0,A[i].y=B[i].y=0;
    for(int i=l;i<=mid;i++)A[i-l].x=dp[i],A[i].y=0;
    for(int j=1;j+l<=R;j++)B[j-1].x=a[j],B[j-1].y=0;
    for(int i=mid-l+1;i<=R-l;i++)
        A[i].x=0,A[i].y=0;
    for(int i=len;i<limit;i++){
        A[i].x=0;A[i].y=0;
        B[i].x=0;B[i].y=0;
    }
    FFT(A,1);FFT(B,1);
    for(int i=0;i<limit;i++)
        A[i]=A[i]*B[i];
    FFT(A,-1);
    for(int i=0;i<limit;i++)
        A[i].x=A[i].x/limit;
    for(int i=mid+1;i<=R;i++)
    {
        dp[i]+=((ll)(A[i-l-1].x+0.5))%313;
        dp[i]%=313;
    }
    cdq(mid+1,R);
}
int main()
{
    while(scanf("%d",&n)==1 && n)
    {
        for(int i=1;i<=n;i++)a[i]=gi()%Mod;
        memset(dp,0,sizeof(dp));
        cdq(1,n);
        printf("%d\n",dp[n]);
    }
    return 0;
}

多项式求逆

挖坑待补

【HDU5730】 Shell Necklace的更多相关文章

  1. 【HDU5730】Shell Necklace(多项式运算,分治FFT)

    [HDU5730]Shell Necklace(多项式运算,分治FFT) 题面 Vjudge 翻译: 有一个长度为\(n\)的序列 已知给连续的长度为\(i\)的序列装饰的方案数为\(a[i]\) 求 ...

  2. 【转】shell编程下 特殊变量、test / [ ]判断、循环、脚本排错

    [转]shell编程下 特殊变量.test / [ ]判断.循环.脚本排错 第1章 shell中的特殊变量 1.1 $# $# 表示参数的个数 1.1.1 [示例]脚本内容 [root@znix ~] ...

  3. 【转】Shell编程进阶篇(完结)

    [转]Shell编程进阶篇(完结) 1.1 for循环语句 在计算机科学中,for循环(英语:for loop)是一种编程语言的迭代陈述,能够让程式码反复的执行. 它跟其他的循环,如while循环,最 ...

  4. 【转】Shell编程基础篇-下

    [转]Shell编程基础篇-下 1.1 条件表达式 1.1.1 文件判断 常用文件测试操作符 常用文件测试操作符 说明 -d文件,d的全拼为directory 文件存在且为目录则为真,即测试表达式成立 ...

  5. 【转】Shell编程基础篇-上

    [转]Shell编程基础篇-上 1.1 前言 1.1.1 为什么学Shell Shell脚本语言是实现Linux/UNIX系统管理及自动化运维所必备的重要工具, Linux/UNIX系统的底层及基础应 ...

  6. 【Markdown】Shell命令高亮显示

    [问题]shell命令,黏贴到简书的代码块上,#后面的命令显示成被注释掉的效果 image.png [目的]高亮显示shell命令 [方案1]在代码块标示符后,加上此代码块所用的语言名(请注意要用小写 ...

  7. 【原】shell编写一个简单的jmeter自动化压测脚本

    在公司做压力测试也挺长时间了,每次测试前环境数据准备都需要话费较长时间,所以一直在考虑能不能将整个过程实现自动化进行,于是就抽空写了一个自动化脚本,当然这个脚本目前功能十分简陋,代码也不完善,很有很多 ...

  8. 【二分】Shell Pyramid

    [来源]:2008年哈尔滨区域赛 [题目链接]: http://acm.hdu.edu.cn/showproblem.php?pid=2446 [题意] 题目是真的长呀,其实就问一个问题. 按照图里面 ...

  9. 【HDU 5730】Shell Necklace

    http://acm.hdu.edu.cn/showproblem.php?pid=5730 分治FFT模板. DP:\(f(i)=\sum\limits_{j=0}^{i-1}f(j)\times ...

随机推荐

  1. 数据库之mysql练习

    建表 部门表 #DROP IF EXISTS TABLE DEPT; CREATE TABLE DEPT( DEPTNO int PRIMARY KEY,##部门编号 DNAME VARCHAR(14 ...

  2. mysqldb mysql_config

    在安装mysqldb Python的时候会用到mysql_config,但是正常安装的MySQL环境下是没有这个文件的,这个文件在Linux下是可执行文件,所以需要到mysql官方网站上下载MySQL ...

  3. clion配置c/c++环境

    打开这个界面  点击添加Cygwin选择下载的Cygwin在进行下面的配置 去网站https://www.cygwin.com/选择路径即可(这里只写了配置过程中的关键步骤并且附上IDE的链接直接安装 ...

  4. JavaScript基础数据类型

    一.数值 1.JavaScript不区分整型和浮点型,就只有一种数字类型 2.还有一种NaN,表示不是一个数字(Not a Number) eg: parseInt("ABC")  ...

  5. 转--O2O刷单“黑市”折射下的泡沫#神作#

    “XX打车和XX用车这样的公司,太不真诚.从前补贴的是现金,现在补贴的都是各种券,还有各种使用上的规则,为什么要设置这么多的限制?反正都要花一样的钱,为什么不能痛快点?让用户体验好一点?” 说这个话的 ...

  6. php中如何配置项目虚拟路径

    php虚拟目录的设置在apache目录下打开conf->httpd.conf文件,找到<IfModule dir_module>,在</IfModule>后面添加如下代码 ...

  7. SELECT INTO创建临时表

    SELECT INTO创建临时表 SQL Server临时表有两种类型:本地和全局.它们在名称.可见性以及可用性上有区别.本地临时表的名称以单个数字符号 (#) 打头:它们仅对当前的用户连接是可见的: ...

  8. springboot深入学习(一)-----springboot核心、配置文件加载、日志配置

    一.@SpringBootApplication @SpringBootApplication是spring boot的核心注解,源码如下: 相当于:@Configuration+@EnableAut ...

  9. WEB应用支持RESTFUL风格方法

    REST概念 Restful就是一个资源定位及资源操作的风格.不是标准也不是协议,只是一种风格.基于这个风格设计的软件可以更简洁,更有层次,更易于实现缓存等机制. REST风格 资源:互联网所有的事物 ...

  10. oracle忘记了sys,system 密码后怎么修改?

    一.忘记除SYS.SYSTEM用户之外的用户的登录密码.  用SYS (或SYSTEM)用户登录: CONN SYS/PASS_WORD AS SYSDBA;  使用如下语句修改用户的密码: ALTE ...