--------------------------------------------------中文翻译-----------------------------------------------------------------------------------------

1、神经元的计算是什么?(B)

A. 在将输出应用到激活函数之前, 神经元计算所有特征的平均值

B. 神经元计算一个线性函数 (z = Wx + b), 然后是一个激活函数

C. 神经元计算一个激活函数, 后跟一个线性函数 (z = Wx + b)

D. 一个神经元计算一个函数 g, 它将输入 x 线性地缩放 (Wx + b)

2、下面哪个是损失函数?(B)

见对应的英文题2

3、假设 img 是一个 (32,32,3) 数组, 代表一个32x32 的图像与3色通道红色, 绿色和蓝色。如何将其重塑为列向量?(B)

A. x = img 重塑 (32 * 32,3))

B. x = img 重塑 (32 * 32 * 3,1))

C. x = img 重塑 (1,32 * 32, * 3))
D. x = img 重塑 (3,32 * 32))
 
4、考虑以下两个随机数组 "a" 和 "b", "c" 的形状是什么?(B)
a = np.random.randn(2, 3) # a.shape = (2, 3)
b = np.random.randn(2, 1) # b.shape = (2, 1)
c = a + b

A. c.shape = (2, 1)

B. c.shape = (2, 3)

C. c.shape = (3, 2)

D. 由于大小不匹配, 无法进行计算。这将是 "错误"!

5、考虑以下两个随机数组 "a" 和 "b", "c" 的形状是什么?(A)

a = np.random.randn(4, 3) # a.shape = (4, 3)
b = np.random.randn(3, 2) # b.shape = (3, 2)
c = a*b

A. 由于大小不匹配, 无法进行计算。这将是 "错误"!

A. c.shape = (3, 3)

B. c.shape = (4, 2)

C. c.shape = (4, 3)

6、假设每一个样本的特征为nx维,X=[x(1)x(2)...x(m)],X的维度是多少?(A)

A. (nx,m)

B. (1,m)

C. (m,1)

D. (m,nx)

7、记得 "np. dot(a, b)" 在 a 和 b 上执行矩阵乘法, 而 "a * b" 执行元素乘法。考虑以下两个随机数组 "a" 和 "b":

a = np.random.randn(12288, 150) # a.shape = (12288, 150)
b = np.random.randn(150, 45) # b.shape = (150, 45)
c = np.dot(a,b)
c 的形状是什么?(D)

A. c. 形状 = (12288, 150)

B. 由于大小不匹配, 无法进行计算。这将是 "错误"!

C. c. 形状 = (150150)

D. c. 形状 = (12288, 45)

8、请考虑以下代码段,你怎么量化?(B)

# a.shape = (3,4)
# b.shape = (4,1) for i in range(3):
for j in range(4):
c[i][j] = a[i][j] + b[j]

A. c = a + b

B. c = a + b.T

C. c = a.T + b

D. c = a.T + b.T

9、请考虑以下代码:c的结果?(如果您不确定, 请随时在 python 中运行此查找)。(A)

a = np.random.randn(3, 3)
b = np.random.randn(3, 1)
c = a*b
A. 这将触发广播机制, 所以 b 被复制三次,成为 (3,3), * 代表矩阵对应元素相乘, 所以 c 的大小将是 (3, 3)
B. 这将触发广播机制, 所以 b 被复制三次,成为 (3, 3), * 代表矩阵乘法,运算两个3x3 的矩阵, 所以 c的大小将是 (3, 3)
C. 这将乘以一个3x3 矩阵 a 与一个3x1 向量b, 从而得到一个3x1 向量。即, c的大小 (3,1)。
D. 这将导致错误, 因为您不能使用 "*" 来操作这两个矩阵。你需要改用 np.dot(a, b)
 
10、考虑下面的计算图。什么是输出 J?(B) (注:由于网站无法显示图片,这题答案不确定。考察的知识点是计算图)
 

A. J = (c - 1)*(b + a)

B. J = (a - 1) * (b + c)

C. J = a*b + b*c + a*c

D. J = (b - 1) * (c + a)

 

课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 1、10个测验题(Neural Network Basics)的更多相关文章

  1. 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第二周:(Basics of Neural Network programming)-课程笔记

    第二周:神经网络的编程基础 (Basics of Neural Network programming) 2.1.二分类(Binary Classification) 二分类问题的目标就是习得一个分类 ...

  2. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...

  3. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week1 Introduction to deep learning课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learn ...

  4. 第四节,Neural Networks and Deep Learning 一书小节(上)

    最近花了半个多月把Mchiael Nielsen所写的Neural Networks and Deep Learning这本书看了一遍,受益匪浅. 该书英文原版地址地址:http://neuralne ...

  5. Neural Networks and Deep Learning学习笔记ch1 - 神经网络

    近期開始看一些深度学习的资料.想学习一下深度学习的基础知识.找到了一个比較好的tutorial,Neural Networks and Deep Learning,认真看完了之后觉得收获还是非常多的. ...

  6. Neural Networks and Deep Learning

    Neural Networks and Deep Learning This is the first course of the deep learning specialization at Co ...

  7. [C3] Andrew Ng - Neural Networks and Deep Learning

    About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...

  8. 《Neural Networks and Deep Learning》课程笔记

    Lesson 1 Neural Network and Deep Learning 这篇文章其实是 Coursera 上吴恩达老师的深度学习专业课程的第一门课程的课程笔记. 参考了其他人的笔记继续归纳 ...

  9. 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 4、Logistic Regression with a Neural Network mindset

    Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exerci ...

  10. Neural Networks and Deep Learning 课程笔记(第四周)深层神经网络(Deep Neural Networks)

    1. 深层神经网络(Deep L-layer neural network ) 2. 前向传播和反向传播(Forward and backward propagation) 3. 总结 4. 深层网络 ...

随机推荐

  1. EF对应null的处理

    原来的代码是 if (string.IsNullOrWhiteSpace(seal)) seal = null; ctx.Terminal.FirstOrDefault(ent=>ent.Sea ...

  2. 在多台PC之间同步Resharper所有设置的方法

    默认情况下Resharper只允许导出CodeStyle的设置,对于其它的设置不能导出,这样在不利用我们在多台PC之间同步Resharper的设置,经过多次尝试和Google找到了一种解决办法: Re ...

  3. HDU 5321 Beautiful Set (莫比乌斯反演 + 逆元 + 组合数学)

    题意:给定一个 n 个数的集合,然后让你求两个值, 1.是将这个集合的数进行全排列后的每个区间的gcd之和. 2.是求这个集合的所有的子集的gcd乘以子集大小的和. 析:对于先求出len,len[i] ...

  4. Typecho 官方文档 接口介绍

    官方开发文档实在是太潦草了 Widget_Archive 接口 参数 描述 indexHandle $archive Widget_Archive对象 $select Typecho_Db_Query ...

  5. Apache 2.4.28的安装

    Apache 2.4.28的安装 1.安装Apache 1.1下载Apache网址:http://httpd.apache.org/ [root@localhost ~]# mkdir -p /roo ...

  6. Linux上的TIME_WAIT和tcp_fin_timeout

    当Linux服务器的TIME_WAIT过多时,通常会想到去修改参数降低TIME_WAIT时长,以减少TIME_WAIT数量,但Linux并没有提供这样的接口,除非重新编译内核. Linux默认的TIM ...

  7. 1.5sleep()方法

    方法sleep()的作用是指在指定的毫秒数内让当前正在执行的线程休眠(暂停执行)这个正在执行的线程是指this.currentThread()返回的线程. 测试如下 package com.cky.t ...

  8. AIX 批量更改密码

    使用 chpasswd 可以使用 chpasswd 方便地更改单个或多个账户密码.这意味着不需要像平时一样在命令行上重复输入密码.尽管可以以交互方式使用 chpasswd,但是我建议以非交互方式使用它 ...

  9. AFNetworking网络请求数据

    //创建AFNetworking的请求操作    AFHTTPRequestOperation *operation = [[AFHTTPRequestOperation alloc] initWit ...

  10. Libre Office超链接单元格

    使用Numbers想实现MS Office中的超链接单元格功能,在网上找了半天,发现没有此功能.伤心.. MAC中安装Libre Office 打开表格类文档 选择需要超链接的单元格,选择“Inser ...