课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 1、10个测验题(Neural Network Basics)
--------------------------------------------------中文翻译-----------------------------------------------------------------------------------------
1、神经元的计算是什么?(B)
B. 神经元计算一个线性函数 (z = Wx + b), 然后是一个激活函数
C. 神经元计算一个激活函数, 后跟一个线性函数 (z = Wx + b)
D. 一个神经元计算一个函数 g, 它将输入 x 线性地缩放 (Wx + b)
2、下面哪个是损失函数?(B)
见对应的英文题2
3、假设 img 是一个 (32,32,3) 数组, 代表一个32x32 的图像与3色通道红色, 绿色和蓝色。如何将其重塑为列向量?(B)
A. x = img 重塑 (32 * 32,3))
B. x = img 重塑 (32 * 32 * 3,1))
a = np.random.randn(2, 3) # a.shape = (2, 3)
b = np.random.randn(2, 1) # b.shape = (2, 1)
c = a + b
A. c.shape = (2, 1)
B. c.shape = (2, 3)
C. c.shape = (3, 2)
5、考虑以下两个随机数组 "a" 和 "b", "c" 的形状是什么?(A)
a = np.random.randn(4, 3) # a.shape = (4, 3)
b = np.random.randn(3, 2) # b.shape = (3, 2)
c = a*b
A. 由于大小不匹配, 无法进行计算。这将是 "错误"!
A. c.shape = (3, 3)
B. c.shape = (4, 2)
C. c.shape = (4, 3)
6、假设每一个样本的特征为nx维,X=[x(1)x(2)...x(m)],X的维度是多少?(A)
A. (nx,m)
B. (1,m)
C. (m,1)
D. (m,nx)
7、记得 "np. dot(a, b)" 在 a 和 b 上执行矩阵乘法, 而 "a * b" 执行元素乘法。考虑以下两个随机数组 "a" 和 "b":
a = np.random.randn(12288, 150) # a.shape = (12288, 150)
b = np.random.randn(150, 45) # b.shape = (150, 45)
c = np.dot(a,b)
A. c. 形状 = (12288, 150)
B. 由于大小不匹配, 无法进行计算。这将是 "错误"!
C. c. 形状 = (150150)
D. c. 形状 = (12288, 45)
8、请考虑以下代码段,你怎么量化?(B)
# a.shape = (3,4)
# b.shape = (4,1) for i in range(3):
for j in range(4):
c[i][j] = a[i][j] + b[j]
A. c = a + b
B. c = a + b.T
C. c = a.T + b
D. c = a.T + b.T
9、请考虑以下代码:c的结果?(如果您不确定, 请随时在 python 中运行此查找)。(A)
a = np.random.randn(3, 3)
b = np.random.randn(3, 1)
c = a*b

A. J = (c - 1)*(b + a)
B. J = (a - 1) * (b + c)
C. J = a*b + b*c + a*c
D. J = (b - 1) * (c + a)
课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 1、10个测验题(Neural Network Basics)的更多相关文章
- 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第二周:(Basics of Neural Network programming)-课程笔记
第二周:神经网络的编程基础 (Basics of Neural Network programming) 2.1.二分类(Binary Classification) 二分类问题的目标就是习得一个分类 ...
- 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...
- 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week1 Introduction to deep learning课堂笔记
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learn ...
- 第四节,Neural Networks and Deep Learning 一书小节(上)
最近花了半个多月把Mchiael Nielsen所写的Neural Networks and Deep Learning这本书看了一遍,受益匪浅. 该书英文原版地址地址:http://neuralne ...
- Neural Networks and Deep Learning学习笔记ch1 - 神经网络
近期開始看一些深度学习的资料.想学习一下深度学习的基础知识.找到了一个比較好的tutorial,Neural Networks and Deep Learning,认真看完了之后觉得收获还是非常多的. ...
- Neural Networks and Deep Learning
Neural Networks and Deep Learning This is the first course of the deep learning specialization at Co ...
- [C3] Andrew Ng - Neural Networks and Deep Learning
About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...
- 《Neural Networks and Deep Learning》课程笔记
Lesson 1 Neural Network and Deep Learning 这篇文章其实是 Coursera 上吴恩达老师的深度学习专业课程的第一门课程的课程笔记. 参考了其他人的笔记继续归纳 ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 4、Logistic Regression with a Neural Network mindset
Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exerci ...
- Neural Networks and Deep Learning 课程笔记(第四周)深层神经网络(Deep Neural Networks)
1. 深层神经网络(Deep L-layer neural network ) 2. 前向传播和反向传播(Forward and backward propagation) 3. 总结 4. 深层网络 ...
随机推荐
- iptables说明(转)
原文:https://www.linuxidc.com/Linux/2016-09/134832.htm 前提基础: 当主机收到一个数据包后,数据包先在内核空间中处理,若发现目的地址是自身,则传到用户 ...
- linux source命令的用法
source命令用法:source FileName作用:在当前bash环境下读取并执行FileName中的命令.(如把ls写入a.txt,然后source a.txt 就会执行ls命令,列出目录)注 ...
- mysql学习之路_事物_存储过程_备份
数据备份与还原 备份:将当前已有的数据保留. 还原:将已经保留的数据恢复到对应表中 为什么要做数据备份 1,防止数据丢失,被盗,误操作 2,保护数据记录 数据备份还原方式有多种:数据表备份 单表数据备 ...
- C# 编码标准(三)
一.代码注释 1.文档型注释 该类注释采用.Net已定义好的Xml标签来标记,在声明接口.类.方法.属性.字段都应该使用该类注释,以便代码完成后直接生成代码文档,让别人更好的了解代码的实现和接口.[示 ...
- 获取当前操作的IFrame对象的方法
分两种情况:第一种:获取JS函数在父页面上,如下 function getIframeByElement(element){ var iframe; $("iframe").eac ...
- poj 2299 Ultra-QuickSort(归并排序,树状数组,线段树)
Description In this problem, you have to analyze a particular sorting algorithm. The algorithm proce ...
- WordPaster-KesionCMS V8整合教程
1.上传WordPaster文件夹 2.上传ckeditor3x插件文件夹 4.修改ckeditor编辑器的config.js文件,启用插件,在工具栏中增加插件按钮 5.在文章页面增加插件初始化代码 ...
- 深入浅出javascript(四)网页运行原理
这一篇是根据不同的书本知识归纳的内容,解答的问题是浏览器是如何工作的? 另外,还有一些长篇的内容,写的是浏览器内部如何架构的,这些内容非常复杂艰深,比现在所写的内容又低了一个层级,希望有时间能总结贴出 ...
- noip第7课资料
- NoSQL数据库的分布式算法
本文译自 Distributed Algorithms in NoSQL Databases 系统的可扩展性是推动NoSQL运动发展的的主要理由,包含了分布式系统协调,故障转移,资源管理和许多其他特性 ...