任务

求解第 10,0000、100,0000、1000,0000 ... 个素数(要求精确解)。

想法

Sieve of Eratosthenes

学习初等数论的时候曾经学过埃拉托斯特尼筛法(Sieve of Eratosthenes),这是一种非常古老但是非常有效的求解\(p_n\)的方法,其原理非常简单:从2开始,将每个素数的各个倍数都标记成合数。

其原理如下图所示:

图引自维基百科

埃拉托斯特尼筛法相比于传统试除法最大的优势在于:筛法是将素数的各个倍数标记成合数,而非判定每个素数是否是素数的倍数,使用了加法代替了除法,降低了时间复杂度。

举个简单的例子,已知2、3、5、7是素数,求小于49的其余素数。

试除法

对于每一个数\(m ( 7 < m < 49 )\)而言,都要进行如下判定:

  • 求出 \({\lceil}\sqrt{m}{\rceil} + 1 = n\) ,试除 $ n $以内的素数即可判定 $ m $是否为素数。
  • m / 2 ... 不整除。
  • m / 3 ... 不整除。
  • ...

对于m而言,只有两种情况可以结束试除:

  1. m 是素数,要把所有候选素数都试除一遍。
  2. m 是合数,可以被某个素数整除。

对于试除法而言,假设新找到 x 个素数, y 个合数 ,需要试除的素数因子有 m 个,则至少需要做 $ x * m + y $次除法。

埃拉托斯特尼筛法

  • 2,2 + 2 = 4, 4 + 2 = 6 ... 48 + 2 = 50 > 49,下一个。
  • 3,3 + 3 = 6, 6 + 3 = 9 ... 48 + 3 = 51 > 49,下一个。
  • 5,5 + 5 = 10, 10 + 5 = 15 ... 45 + 5 = 50 > 49,下一个。
  • 7, 7 + 7 = 14, 14 + 7 = 21 ... 42 + 7 = 49 = 49,下一个。
  • 没有小于 8 的素数了,停止标记,没有标记到的都是素数。

实际上,假设在 \(\sqrt{x}\) 以内有 $ m $个素数,在 \((\sqrt{x},x]\)范围内又找到了 $n $个素数,可以明显看到试除法和筛法的差异:

  1. 试除法至少要做 $ n * m + x - n - m (1)$次除法
  2. 筛法需要做 $ x - n - m (2)$次加法

做一次除法运算的时间要大于加法,且有 \((1)\) > \((2)\),所以试除法开销远比筛法大。

现在回到问题本身,问题本身是求解第 n 个素数,所以我们一开始并不知道我们需要在多大的范围内求解素数,但是许多数学家给了我们很多定理,比如这个第\(n\)个素数\(p_n\)的不等式。

\[p_n < n \ln n + n \ln \ln n\! ( n ≥ 6 )
\]

有了这个函数,我们可以在输入 $ n $之后用它估算第 $ n $个素数的上界,继而求解。

优化一:朴素筛法

输入的 \(n\) 值为素数的序号,假设求得的素数上界为 limit。为了让筛法跑得更快,在内存允许的范围内,我们可以直接用一个limit大小的数组 sieve[limit] 求解:下标是int,值为bool,数组初始值均为 true,表示都未标记。假设下标为 index

  • index = 2,sieve[index] = true,开始标记,逐次将 sieve[index+2]标记为false,直到下标超过limit。
  • index = 3,sieve[index] = true,开始标记,逐次将 sieve[index+3]标记为false,直到下标超过limit。
  • index = 4, sieve[index] = false,跳过。

    ...

按照上述方式标记完成后,最终在数组中过滤一遍,求得第 n 个未被标记的下标值,即为第 n 个素数。

附代码如下:

public static void Normal_Sieve(int nth)
{
int startTime = System.Environment.TickCount;
int limit = nth < 6 ? 25 : (int)(nth * (Math.Log(nth) + Math.Log(Math.Log(nth))));
int count = 0; List<bool> is_prime = new List<bool>(limit+1); for (int i = 0; i < limit+1; i++)
is_prime.Add(true); for (int i = 2; i * i <= limit; i++)
if (is_prime[i])
for (int j = i * i; j <= limit; j += i)
is_prime[j] = false; for(int i=2;i<is_prime.Count();i++)
{
if (is_prime[i])
count++;
if(count == nth)
{
Console.WriteLine("The nth_prime is:{0} SpentTime:{1}ms",i,Environment.TickCount- startTime);
break;
}
}
}

优化二:位筛法

位筛法相比于简单筛法的改进就是:用1个比特位来标记某个下标是否是素数。1个bool类型要占 8 位,用1个比特位可以使程序在极限内存容量的情况下,比普通筛法能多计算一些素数。

举个例子,按照上面的普通筛法,因为内存大小的限制最多只能求解第 1000,000,000 个素数,那么位筛法就可以求解到第 7000,000,000 个素数。

下面附上位筛法的代码

public static void Bit_Sieve(int nth)
{
int startTime = Environment.TickCount;
int limit = nth < 6 ? 25 : (int)(nth * (Math.Log(nth) + Math.Log(Math.Log(nth))));
int count = 0; int total = limit + 1;
int sqrt = (int)Math.Sqrt(limit) + 1; //[31 30 29 ... 0] every number maps to a bit in uint.
List<uint> is_prime = new List<uint>((total >> 5) + 1); for (int i = 0; i < (total >> 5) + 1; i++)
is_prime.Add(0x0); for (int i = 2; i <= sqrt; i++)
// is_prime[i>>5] bit i % 32 == 0 means it is a prime
if ((is_prime[i >> 5] & (1 << (i & 31))) == 0)
{
for (int j = i * i; j <= total; j += i)
// is_prime[j>>5] bit j % 32 = 1;
is_prime[j >> 5] |= (uint)1 << (j & 31);
} for (int i = 2; i < total; i++)
{
if ((is_prime[i >> 5] & (1 << (i & 31))) == 0)
{
count++;
if (count == nth)
{
Console.WriteLine("The {0}th_prime is:{1} SpentTime:{2}ms",nth , i, Environment.TickCount - startTime);
break;
}
}
}
}

在位筛法中大部分运算都是移位、与和或的运算,所以在测试时发现要比简单的筛法更快一些。

优化三:局部筛法

假设计算得出的第\(n\)个素数上界为\(x\),在位筛法中,我们申请了一个大小为\(x bit\)的数组用来标记合数。随之而来一个问题,难道在筛法中,我们必须使用 \(x bit\)才能求出第 n 个素数吗?

当然不是,对于素数上界\(x\),其实不需要这么大的空间,我们只需把\(\sqrt{x}\)以前的素数保存下来即可。

为什么一定是 \(\sqrt{x}\)呢?想象一下最暴力的试除法:它在判定一个数是否为素数时,需要遍历试除\(\sqrt{x}\)及以内的素因子。如果\(x\)是一个合数,则必然存在一个素因子整除\(x\),且其值小于等于\(\sqrt{x}\)。那么反过来想一下,在筛法中,如果\(\sqrt{x}\)及以内的所有素因子都没有标记\(x\)为合数,那么它一定是一个素数了。

基于这样的思想,我们将\([0,\sqrt{x}]\)内的素数保存下来,然后对\([\sqrt{x},x]\)分段去扫,每扫一段就记录一下本段扫到了多少个素数。这样每次需要载入内存的就只有用于扫描的小素数数组被扫描的段数组,相比位筛法可以节省更多内存空间。

下面举个简单的例子来说明这种算法:

假设要求解第11个素数(31),我们估计出上界为 36,然后下面就是局部筛法的求解过程。

  • \(\sqrt{36}=6\),然后利用埃拉托斯特尼筛法求出[2,6]内的素数,即数组 [2,3,5],此时素数有 3 个。
  • 申请一个大小为10的数组 **A **存储被扫描段。
  • 将[7,36]内的元素按照10个元素一组的方式分成三组(Ps:最后一组不够10个元素)
  • 初始化数组A,此时数组A的下标[0,9]分别映射到[7,16]。
    • 用素数2开始标记,因为8、10、12...是2的倍数,所以标记A[1]、A[3]、A[5]...为合数。
    • 用素数3开始标记,因为9、12、15...是3的倍数,标记A[2]、A[5]、A[8]...为合数。
    • 用素数5开始标记,因为10、15是5的倍数,标记A[3]、A[8]为合数。
    • 扫描A数组内未被标记元素下标为:0、4、6、10,所以这一段有 4 个素数,把它们对应的实际数字存入素数数组。
    • 现在已经发现了 7 个素数,还未达到预期的11个,继续扫描。
  • 重新初始化数组A,此时数组A的下标[0,9]分别映射到[17,26]。
    • 与上述过程一样,用素数2、3、5,分别扫描一遍。
    • 记下未被标记的数字,这一段扫描到了 2个素数,到现在已经发现了 9个素数。
  • 重新初始化数组A,继续扫描寻找。

局部筛法的求解过程如上所述,因为每个时刻内存中只需要一个段的内存来存放需要扫描的段,而不需要一次性把所有的段都加载到内存中进行筛选,所以其对内存的要求更低。

下面附上局部筛法的代码

public static void Local_Bit_Sieve(int nth)
{
int startTime = Environment.TickCount;
int limit = nth < 6 ? 25 :(int)(nth * (Math.Log(nth) + Math.Log(Math.Log(nth))));
int sqrt = (int) Math.Sqrt(limit) + 1; //Get all primes which are less than \sqrt{limit}
List<uint> isPrime = new List<uint>((sqrt >> 5) +1);
for (int i = 0; i < (sqrt >> 5) + 1; i++)
isPrime.Add(0x0);
for (int i = 2; i * i <= sqrt; i++)
// is_prime[i>>5] bit i % 32 == 0 means it is a prime
if ((isPrime[i >> 5] & (1 << (i & 31))) == 0)
{
for (int j = i * i; j <= sqrt; j += i)
// is_prime[j>>5] bit j % 32 = 1;
isPrime[j >> 5] |= (uint)1 << (j & 31);
} //smallPrimes store the primes
List<int> smallPrimes = new List<int>();
for (int i = 2; i < sqrt; i++)
{
if ((isPrime[i >> 5] & (1 << (i & 31))) == 0)
{
smallPrimes.Add(i);
}
} int segSize = Math.Max(sqrt,256 * 256); uint[] primeSeg = new uint[segSize]; //allPrimes store all primes which are found.
List<int> allPrimes = new List<int>();
allPrimes.AddRange(smallPrimes); int high = segSize << 5;
//chunk [2,limit] into different segments
for (int low = sqrt; low <= limit; low += segSize << 5)
{
Array.Clear(primeSeg,0,segSize);
//for each prime, use them to mark the [low,low + segSize]
foreach (var sPrime in smallPrimes)
{
int initValue = low % sPrime;
for (int i = (initValue == 0 ? initValue : sPrime - initValue); i < high; i += sPrime)
{
primeSeg[i >> 5] |= (uint) 1 << (i & 31);
}
} for (int i = 0; i < high; i++)
{
if ((primeSeg[i >> 5] & (1 << (i & 31))) == 0)
allPrimes.Add(i + low);
} if (allPrimes.Count() > nth)
{
Console.WriteLine("The {0}th_prime is:{1} SpentTime:{2}ms",nth, allPrimes[nth-1],
Environment.TickCount - startTime);
break;
}
}
}

优化四:局部筛法段优化

我们之前之所以说使用朴素筛法可以跑得飞快,是因为从直觉上说,朴素筛法一次性将所有的数据都加载到内存中,一次筛完。而局部筛法却需要筛取多次,筛取多次好像时间开销就要比一次加载筛取要多。

看起来局部筛法好像需要筛多次,所以它所耗费的时间就要比一次筛的要慢,但实际上却不是这样。实际上,计算机系统中Cache的存在对局部筛法更加有利,所耗费的时间也更小。我们分段筛选,反而更加符合空间上的局部性,所以程序可以更高效地利用Cache,Cache的存取速度要远大于内存,所以局部筛法耗费的时间要比朴素筛更少。这个问题可以这么形容:是用一个振动频率比较慢,但是很大的筛子筛选比较快,还是用连续用多个振动频率较快,但是比较小的筛子筛快?

我们可以通过选择一个合理的段大小来减少 Cache miss的概率。我电脑上的L1Cache容量是 256KB,所以最后我选择了 256 * 256 作为段的大小。

Benchmark

n 简单筛法 位筛法 局部位筛法
1,000,000 1.75s 0.938s 0.5s
2,000,000 4.562s 4.328s 2.156s
3,000,000 7.063s 7.140s 3.140s
5,000,000 13.328s 11.407s 4.750s
8,000,000 22.484s 17.110s 9.140s
10,000,000 23.563s 22.347s 11.078s
20,000,000 57.219s 53.313s 22.734s

目前的测试只是大致估计,这个数字不是很准,仅供参考。

[软工课程博客] 求解第N个素数的更多相关文章

  1. [BUAA软工]第一次博客作业---阅读《构建之法》

    [BUAA软工]第一次博客作业 项目 内容 这个作业属于哪个课程 北航软工 这个作业的要求在哪里 第1次个人作业 我在这个课程的目标是 学习如何以团队的形式开发软件,提升个人软件开发能力 这个作业在哪 ...

  2. 2020BUAA软工个人博客作业-软件案例分析

    2020BUAA软工个人博客作业-软件案例分析 17373010 杜博玮 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 个人博客作业-软件案例分 ...

  3. 2020BUAA软工个人博客作业

    2020BUAA软工个人博客作业 17373010 杜博玮 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 个人博客作业 我在这个课程的目标是 学 ...

  4. [敏捷软工团队博客]Beta阶段事后分析

    设想和目标 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 我们的软件要解决的问题是:现在的软工课程的作业分布在博客园.GitHub上,没有一个集成多种功能的一体化 ...

  5. [敏捷软工团队博客]Beta阶段项目展示

    团队成员简介和个人博客地址 头像 姓名 博客园名称 自我介绍 PM 测试 前端 后端 dzx 秃头院的大闸蟹 大闸蟹是1706菜市场里无菜可卖的底层水货.大闸蟹喜欢音乐(但可惜不会),喜欢lol(可惜 ...

  6. [敏捷软工团队博客]项目介绍 & 需求分析 & 发布预测

    项目 内容 2020春季计算机学院软件工程(罗杰 任健) 博客园班级博客 作业要求 团队项目选择 我们在这个课程的目标是 在团队合作中锻炼自己 这个作业在哪个具体方面帮助我们实现目标 了解项目整体情况 ...

  7. [敏捷软工团队博客]The Agiles 团队介绍&团队采访

    项目 内容 课程:北航-2020-春-敏捷软工 博客园班级博客 作业要求 团队作业-团队介绍和采访 团队名称来源 The Agile is The Agile. 敏捷就是敏捷.我们只是敏捷的践行者罢了 ...

  8. 自我介绍&软工实践博客点评

    想想既然写了点评博客,那就顺便向同学们介绍下自己吧. 我是16届计科实验班的,水了两件小黄衫,于是就来当助教了_(:_」∠)_ 实话说身为同届生来当助教,我心里还是有点虚的,而且我还是计科的..感觉软 ...

  9. [敏捷软工团队博客]Beta阶段发布声明

    项目 内容 2020春季计算机学院软件工程(罗杰 任健) 博客园班级博客 作业要求 Beta阶段发布声明 我们在这个课程的目标是 在团队合作中锻炼自己 这个作业在哪个具体方面帮助我们实现目标 对Bet ...

随机推荐

  1. postgresql+postgis+pgrouting实现最短路径查询(1)---线数据的处理和建立拓扑

    准备一个线shp数据,并将其导入postgres里面,postgres安装postgis和pgrouting两个插件(方法见http://www.cnblogs.com/nidaye/p/455352 ...

  2. Android开发——Android中常见的4种线程池(保证你能看懂并理解)

    0.前言 转载请注明出处:http://blog.csdn.net/seu_calvin/article/details/52415337 使用线程池可以给我们带来很多好处,首先通过线程池中线程的重用 ...

  3. jenkins报错;自定义工作目录;

    [1]no such file 报错: 如果jdk配置路径错误,有可能会报这样的错误: 其实只要在/etc/profile中配置好JAVA_HOME就足够了: 对应的系统配置框,留空不新加即可: [2 ...

  4. ICC Stage Flow

    initial: reference library(mw), link library(db), create_mw_lib, read_verilog, link create_floorplan ...

  5. ssh推送.py程序到服务器端运行

    C:\Users\jiangshan>ssh jiangshan@192.168.1.191jiangshan@192.168.1.191's password:Last login: Sun ...

  6. Jmeter之目录结构

    首先得了解一下这些东西,以后才能快速的找到某些配置文件进行修改(举个例子,改配置只是其中之一) 一.bin目录examples:  目录中有CSV样例 jmeter.bat  windows的启动文件 ...

  7. ansible 远程以普通用户执行命令

    1. ansible 10.0.0.1 -m raw -a "date" -u www 2.在ansible的主机配置文件中指定ssh_uservi/etc/ansible/hos ...

  8. Python开发简单爬虫

    简单爬虫框架: 爬虫调度器 -> URL管理器 -> 网页下载器(urllib2) -> 网页解析器(BeautifulSoup) -> 价值数据 Demo1: # codin ...

  9. 20155204 王昊《网络对抗技术》EXP4

    20155204 王昊<网络对抗技术>EXP4 一.实验后回答问题 (1)如果在工作中怀疑一台主机上有恶意代码,但只是猜想,所有想监控下系统一天天的到底在干些什么.请设计下你想监控的操作有 ...

  10. 20155307实验八 《网络对抗》 Web基础

    20155307实验八 <网络对抗> Web基础 实验过程 Web前端:HTML 使用netstat -aptn查看80端口是否被占用(上次实验设置为Apache使用80端口),如果被占用 ...