LOJ#6503.「雅礼集训 2018 Day4」Magic[容斥+NTT+启发式合并]
题意
\(n\) 张卡牌 \(m\) 种颜色,询问有多少种本质不同的序列满足相邻颜色相同的位置数量等于 \(k\)。
分析
首先本质不同不好直接处理,可以将同种颜色的卡牌看作是不相同的,求出答案后除以 \(\prod {a_i!}\) 即可。
如果我们能够得到一个至少存在 \(k\) 个魔术对的排列数,就可以容斥了。
考虑单独处理每种颜色, 枚举一个颜色 \(i\),计算这种颜色至少有 \(j\) 对的方案总数。
可以选择 \(j\) 张牌保证这些牌一定跟在某张牌的后面,这样就可以形成 \(\geq j\) 个满足要求的魔术对了。
然后做一个背包。
定义状态 \(f_{i,j}\) 表示处理了前 \(i\) 种颜色,至少存在 \(j\) 对魔术对的排列数。
对于 \(f_{m,j}\),剩下的 \(n-j\) 张牌可以任意排列。背包是一个卷积的形式可以 NTT 优化。
合并背包的过程可以用堆维护,每次合并堆顶最小的两个背包数组,复杂度类似启发式合并。
所以总时间复杂度为 \(O(n\log^2n)\)。
技巧:在计算方案出现困难的时候考虑容斥简化条件(类似反演题目的思想)
代码
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
typedef pair<int,int> pii;
#define mp make_pair
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int N=1e5 + 7,mod=998244353;
int n,m,k,K,len,lst,sz[N<<1],a[N];
LL invfac[N],inv[N],fac[N];
vector<LL>v[N<<1];
priority_queue<pii,vector<pii>,greater<pii> >Q;
void add(LL &a,LL b){a+=b;if(a>=mod) a-=mod;}
LL Pow(LL a,LL b){
LL res=1ll;
for(;b;b>>=1,a=a*a%mod) if(b&1) res=res*a%mod;
return res;
}
LL Inv(LL a){return Pow(a,mod-2);}
LL C(int n,int m){
return fac[n]*invfac[m]%mod*invfac[n-m]%mod;
}
void ntt(vector<LL> &c,int n,int f){
for(int i=0,j=0;i<n;++i){
if(i<j) swap(c[i],c[j]);
for(int k=n>>1;(j^=k)<k;k>>=1);
}
for(int i=1;i<n;i<<=1){
LL wn=Pow(3,(mod-1)/(i<<1));
if(f==-1) wn=Inv(wn);
for(int j=0;j<n;j+=i<<1){
LL w=1;
for(int k=0;k<i;++k,w=w*wn%mod){
LL x=c[j+k],y=w*c[j+k+i]%mod;
c[j+k]=(x+y)%mod;
c[j+k+i]=(x-y+mod)%mod;
}
}
}
if(f==-1){LL inv=Inv(n);for(int i=0;i<n;++i) c[i]=c[i]*inv%mod;}
}
int main(){
m=gi(),n=gi(),K=gi();
fac[0]=invfac[0]=inv[1]=1;
rep(i,1,n){
if(i^1) inv[i]=(mod-mod/i)*inv[mod%i]%mod;
fac[i]=fac[i-1]*i%mod;
invfac[i]=invfac[i-1]*inv[i]%mod;
}
rep(c,1,m){
sz[c]=a[c]=gi();int x=a[c];
Q.push(mp(sz[c],c));
v[c].resize(x+7);
rep(i,0,x-1) v[c][i]=C(x,i)*fac[x-1]%mod*invfac[x-i-1]%mod;
}
while(!Q.empty()){
int x=Q.top().second;Q.pop();
if(Q.empty()) { lst=x; break; }
int y=Q.top().second;Q.pop();
for(len=1;len<=sz[x]+sz[y];len<<=1);
v[x].resize(len+7);
v[y].resize(len+7);
ntt(v[x],len,1);
ntt(v[y],len,1);
for(int i=0;i<len;++i) v[x][i]=v[x][i]*v[y][i]%mod;
ntt(v[x],len,-1);
sz[x]+=sz[y];
v[y].clear();
Q.push(mp(sz[x],x));
}
LL ans=0;
rep(i,K,n-1)
add(ans,(i-K&1?mod-1:1)*v[lst][i]%mod*C(i,K)%mod*fac[n-i]%mod);
rep(i,1,m) ans=ans*invfac[a[i]]%mod;
printf("%lld\n",ans);
return 0;
}
LOJ#6503.「雅礼集训 2018 Day4」Magic[容斥+NTT+启发式合并]的更多相关文章
- Loj #6503. 「雅礼集训 2018 Day4」Magic
Loj #6503. 「雅礼集训 2018 Day4」Magic 题目描述 前进!前进!不择手段地前进!--托马斯 · 维德 魔法纪元元年. 1453 年 5 月 3 日 16 时,高维碎片接触地球. ...
- LOJ6503. 「雅礼集训 2018 Day4」Magic(容斥原理+NTT)
题目链接 https://loj.ac/problem/6503 题解 题中要求本质不同的序列数量,不太好搞.我们考虑给相同颜色的牌加上编号,这样所有牌都不相同.那么如果我们求出了答案,只需要将答案除 ...
- Loj#6503-「雅礼集训 2018 Day4」Magic【分治NTT】
正题 题目链接:https://loj.ac/p/6503 题目大意 \(n\)张卡\(m\)种,第\(i\)种卡有\(a_i\)张,求所有排列中有\(k\)对相邻且相同的卡牌. \(1\leq n\ ...
- 【loj#6503.】「雅礼集训 2018 Day4」Magic(生成函数+容斥)
题面 传送门 题解 复杂度比较迷啊-- 以下以\(n\)表示颜色总数,\(m\)表示总的卡牌数 严格\(k\)对比较难算,我们考虑容斥 首先有\(i\)对就代表整个序列被分成了\(m-i\)块互不相同 ...
- 2018.10.27 loj#6035. 「雅礼集训 2017 Day4」洗衣服(贪心+堆)
传送门 显然的贪心题啊...考试没调出来10pts滚了妙的一啊 直接分别用堆贪心出洗完第iii件衣服需要的最少时间和晾完第iii件衣服需要的最少时间. 我们设第一个算出来的数组是aaa,第二个是bbb ...
- LOJ #6509. 「雅礼集训 2018 Day7」C
神仙题 LOJ #6509 题意 给定一棵树,点权为0/1,每次随机一个点(可能和之前所在点相同)走到该点并将其点权异或上1 求期望的移动距离使得所有点点权相同 题解 根本不会解方程 容易发现如果一个 ...
- loj 6037 「雅礼集训 2017 Day4」猜数列 - 动态规划
题目传送门 传送门 题目大意 有一个位置数列,给定$n$条线索,每条线索从某一个位置开始,一直向左或者向右走,每遇到一个还没有在线索中出现的数就将它加入线索,问最小的可能的数列长度. 依次从左到右考虑 ...
- Loj 6036 「雅礼集训 2017 Day4」编码 - 2-sat
题目传送门 唯一的传送门 题目大意 给定$n$个串,每个串只包含 ' .问是否可能任意两个不同的串不满足一个是另一个的前缀. 2-sat的是显然的. 枚举每个通配符填0还是1,然后插入Trie树. 对 ...
- LOJ #6037.「雅礼集训 2017 Day4」猜数列 状压dp
这个题的搜索可以打到48分…… #include <cstdio> #include <cstring> #include <algorithm> ; bool m ...
随机推荐
- Oracle EBS AP 发票放弃行
-- purpose: 应付发票放弃发票行 -- 12.2.6 环境 -- author:jenrry create_date: 2017-06-07 declare l_dummy_msg VARC ...
- 无法将数据库从SINGLE_USER模式切换回MULTI_USER模式(Error 5064),及查找SQL Server数据库中用户spid(非SQL Server系统spid)的方法
今天公司SQL Server数据库无意间变为SINGLE_USER模式了,而且使用如下语句切换回MULTI_USER失败: ALTER DATABASE [MyDB] SET MULTI_USER W ...
- vsftp配置
网上很多,但我还是想再整理一份属于自己的 1.vsftp简介 vsftp提供三种登陆方式:.匿名登录 .本地用户登录 .虚拟用户登录 vsftpd的特点:.较高的安全性需求 .带宽的限制 .创建支持虚 ...
- chrome浏览器访问Google的插件“谷歌访问插件”以及常用插件
1.解决新版谷歌浏览器无法从该网站添加应用.拓展程序和用户脚本 1.在Google Chrome浏览器的桌面快捷方式上鼠标右键,选择属性(R). 2. 在目标(T)后添加参数 --enable-e ...
- 团队作业8-测试与发布(beta阶段)
小组成员 [组长]金盛昌(201421122043).刘文钊(20142112255).陈笑林(201421122042) 张俊逸(201421122044).陈志建(201421122040).陈金 ...
- 2.python数据结构的性能分析
一.引言 - 现在大家对 大O 算法和不同函数之间的差异有了了解.本节的目标是告诉你 Python 列表和字典操作的 大O 性能.然后我们将做一些基于时间的实验来说明每个数据结构的花销和使用这些数据结 ...
- canvas实例_在线画图工具
fadsfklasdjfklasjdklfjasdlk;fjasd;lfjaskl;dfjal
- python第二十七课——os模块
演示os模块中常用的属性和函数: 1.os模块: 作用:管理文件和目录 属性: os.name:返回系统类型 常用的windows系统 --> nt os.environ:返回当前系统所有的环境 ...
- 3130: [Sdoi2013]费用流
Description Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识. 最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量.一个合法的网络流方案 ...
- Android APP的字体设置
Android系统自带有对字体的设置,这些设置是对字体的显示方式的设置,比如加粗,倾斜,下划线,字号等,但是对于字体本身,比如设置为楷体,隶书等貌似没有.Android系统只有一种默认的,如果需要修改 ...