StanFord ML 笔记 第四部分
第四部分:
1.生成学习法 generate learning algorithm
2.高斯判别分析 Gaussian Discriminant Analysis
3.朴素贝叶斯 Navie Bayes
4.拉普拉斯平滑 Navie Bayes
一、生成学习法generate learning algorithm:
二类分类问题,不管是感知器算法还是逻辑斯蒂回归算法,都是在解空间中寻找一条直线从而把两种类别的样例分开,对于新的样例只要判断在直线的哪一侧即可;这种直接对问题求解的方法可以成为判别学习方法(discriminative learning algorithm)。而生成学习算法则是对两个类别分别进行建模,用新的样例去匹配两个模型,匹配度较高的作为新样例的类别,比如良性肿瘤与恶性肿瘤的分类,首先对两个类别分别建模,比如分别计算两类肿瘤是否扩散的概率,计算肿瘤大小大于某个值的概率等等;再比如狗与大象的分类,分别对狗与大象建模,比如计算体重大于某个值的概率,鼻子长度大于某个值的概率等等。
比如说良性肿瘤和恶性肿瘤的问题,对良性肿瘤建立model1(y=0),对恶性肿瘤建立model2(y=1),p(x|y=0)表示是良性肿瘤的概率,p(x|y=1)表示是恶性肿瘤的概率.
根据贝叶斯公式(Bayes rule)推导出y在给定x的概率为:
注释如下:
二、高斯判别分析 Gaussian Discriminant Analysis:
先看概念:高维高斯分布的理解
1. 如何描述问题?
1.0 问题的假设是什么?
这个模型对于数据有非常强的假设:
它假设变量是连续的,并且每一个特征都符合正态分布(即高斯分布)
即输入特征满足多元正态分布(后面来讲)
对应一个二元分类问题 y = h(x), 需要满足下面的分布:
1.1 如何用模型描述问题?
由于有了上面的假设,问题可以描述为:
当需要分类是,通过贝叶斯公式计算其属于某一类的概率:
1.2 如何定义求解目标?
算法的求解目标为使其联合概率最大化,即
2. 如何求解问题?
对似然函数求导得到
算法表述在图上可以为
什么是多元正态分布(The Multivariate Normal Distribution)?
多元正态分布描述的是 n 维随机变量的分布情况,这里的μ变成了向量, σ也变成了矩阵Σ。写作
StanFord ML 笔记 第四部分的更多相关文章
- StanFord ML 笔记 第三部分
第三部分: 1.指数分布族 2.高斯分布--->>>最小二乘法 3.泊松分布--->>>线性回归 4.Softmax回归 指数分布族: 结合Ng的课程,在看这篇博文 ...
- StanFord ML 笔记 第八部分
第八部分内容: 1.正则化Regularization 2.在线学习(Online Learning) 3.ML 经验 1.正则化Regularization 1.1通俗解释 引用知乎作者:刑无刀 ...
- StanFord ML 笔记 第五部分
1.朴素贝叶斯的多项式事件模型: 趁热打铁,直接看图理解模型的意思:具体求解可见下面大神给的例子,我这个是流程图. 在上篇笔记中,那个最基本的NB模型被称为多元伯努利事件模型(Multivariate ...
- StanFord ML 笔记 第一部分
本章节内容: 1.学习的种类及举例 2.线性回归,拟合一次函数 3.线性回归的方法: A.梯度下降法--->>>批量梯度下降.随机梯度下降 B.局部线性回归 C.用概率证明损失函数( ...
- StanFord ML 笔记 第十部分
第十部分: 1.PCA降维 2.LDA 注释:一直看理论感觉坚持不了,现在进行<机器学习实战>的边写代码边看理论
- StanFord ML 笔记 第九部分
第九部分: 1.高斯混合模型 2.EM算法的认知 1.高斯混合模型 之前博文已经说明:http://www.cnblogs.com/wjy-lulu/p/7009038.html 2.EM算法的认知 ...
- StanFord ML 笔记 第六部分&&第七部分
第六部分内容: 1.偏差/方差(Bias/variance) 2.经验风险最小化(Empirical Risk Minization,ERM) 3.联合界(Union bound) 4.一致收敛(Un ...
- StanFord ML 笔记 第二部分
本章内容: 1.逻辑分类与回归 sigmoid函数概率证明---->>>回归 2.感知机的学习策略 3.牛顿法优化 4.Hessian矩阵 牛顿法优化求解: 这个我就不记录了,看到一 ...
- Hadoop阅读笔记(四)——一幅图看透MapReduce机制
时至今日,已然看到第十章,似乎越是焦躁什么时候能翻完这本圣经的时候也让自己变得更加浮躁,想想后面还有一半的行程没走,我觉得这样“有口无心”的学习方式是不奏效的,或者是收效甚微的.如果有幸能有大牛路过, ...
随机推荐
- Hadoop Mapreduce 案例 wordcount+统计手机流量使用情况
mapreduce设计思想 概念:它是一个分布式并行计算的应用框架它提供相应简单的api模型,我们只需按照这些模型规则编写程序,即可实现"分布式并行计算"的功能. 案例一:word ...
- 自然语言处理hanlp的入门基础
此文整理的基础是建立在hanlp较早版本的基础上的,虽然hanlp的最新1.7版本已经发布,但对于入门来说差别不大!分享一篇比较早的“旧文”给需要的朋友! 安装HanLP HanLP将数据与程序分 ...
- 教你用CMD命令查询域名的DNS解析记录:A,NS,MX,CNAME,TXT
1.查询域名的A记录 nslookup -qt=A qqgzs.com 当然查询A记录你直接用ping命令来ping域名也可以获得A记录. 2.查询域名的NS记录 nslookup -qt=NS qq ...
- 4G模块luci的配置及重连脚本
一.4G Luci配置 1. 新建一个wwan接口: 2. 上网方式为dhcp自动获取: 3. 物理设置选择wwan0: 4. 防火墙选择wan 二.重连脚本redial4g LogFile=/roo ...
- WEKA结果解读
红括号里面,左边是bad的数目,右边是good数目. TP Rate FP Rate Precision Recall F-Measure ROC Area Class 0.536 ...
- chrome flash
chrome://settings/content/flash 在Chrome地址栏中输入:chrome://settings/content/flash,进入Flash设置,勾选允许网站运行flas ...
- vi快捷键使用大全
光标控制命令 命令 光标移动 h或^h 向左移一个字符 j或^j或^n 向下移一行 k或^p 向上移一行 l或空格 向右移一个字符 G 移到文件的最后一行 nG 移到文件的第n行 w 移到下一个字的开 ...
- Dubbo的原理以及详细原理、配置
Dubbo的背景 随着互联网的发展,网站应用的规模不断扩大,常规的垂直应用架构已无法应对,分布式服务架构以及流动计算架构势在必行,亟需一个治理系统确保架构有条不紊的演进. Dubbo的应用 用于大规模 ...
- 【HTTP】使用 RestTemplete 实现 post请求
如上图,要求: post请求; x-www-form-urlencoded 类型; 如下代码没有进行整理,但是测试OK package com.chinamobile.epic.http; impor ...
- [转]jvm加载类规则
jvm包括三种类加载器: 第一种:bootstrap classloader:加载Java的核心类. 第二种:extension classloader:负责加载jre的扩展目录中的jar包. 第三种 ...