[1.16更新B14特征处理]津南数字制造题目解读及部分思路~~有趣的特征
首先声明,我并不能保证这些特征可以上分,每个人处理方式不同结果肯定不一样。
大家也最好不要私聊私下讨论方案。感觉不太好,其实大家一般问我的,我回复的内容都是我自己乱想的,基本没测过。
处理的步骤和思路都在图和代码里了,应该是还有其他操作的,这种思路小伙伴们可以参考参考。
代码:
<predejavu sans="" mono';font-size:15.0pt;"="">train = train[train['<spanar pl="" ukai="" cn';"="">收率'] > 0.87]
print(len(train))
train.loc[train['B14'] == 40, 'B14'] = 400
train = train[train['B14']>=400]
print(len(train))
train = train[good_cols]
good_cols.remove('<spanar pl="" ukai="" cn';"="">收率')
test = test[good_cols]
test_select = {}
for v in [280, 385, 390, 785]:
print(v)
print(test[test['B14'] == v]['<spanar pl="" ukai="" cn';"="">样本id'])
test_select[v] = test[test['B14'] == v]['<spanar pl="" ukai="" cn';"="">样本id'].index
print(test[test['B14'] == v]['<spanar pl="" ukai="" cn';"="" data-spm-anchor-id="">样本id'].index)
print(test_select[v])</spanar></spanar></spanar></spanar></spanar></predejavu>
<predejavu sans="" mono';font-size:15.0pt;"=""><spanar pl="" ukai="" cn';"=""><spanar pl="" ukai="" cn';"=""><spanar pl="" ukai="" cn';"=""><spanar pl="" ukai="" cn';"=""><spanar pl="" ukai="" cn';"="">
</spanar></spanar></spanar></spanar></spanar></predejavu>
<predejavu sans="" mono';font-size:15.0pt;"=""><spanar pl="" ukai="" cn';"=""><spanar pl="" ukai="" cn';"=""><spanar pl="" ukai="" cn';"=""><spanar pl="" ukai="" cn';"=""><spanar pl="" ukai="" cn';"=""><predejavu sans="" mono';font-size:15.0pt;"="">for v in test_select.keys():
if v == 280:
x = 0.947
elif v == 385 or v == 785:
x = 0.879
elif v == 390:
x = 0.89
print(v)
print(test_select[v])
# sub_df.iloc[test_select[v]][1] = x
sub_df.loc[test_select[v], 1] = x</predejavu>
</spanar></spanar></spanar></spanar></spanar></predejavu>
Motivation
那我们怎么操作才能找到对比实验呢???
如何构造相关特征呢?

all = all.sort_values(keep_col, ascending=True)
all['b14_div_a1_a2_a3_a4_a19_b1b2_b12b13'] = all['B14']/(all['A1']+all['A2']+all['A3']+all['A4']+all['A19']+all['B1']*all['B2']+all['B12']*all['B13'])
# all.loc[all['B14']<=360, 'B14'] = all['B14']+140
ids = all['样本id'].values
all_copy_previous_row = all[copy_col].copy()
all_copy_previous_row['time_mean'] = all_copy_previous_row[['B9','B10','B11']].std(axis=1)
all_copy_previous_row.drop(['B9','B10','B11'], axis=1, inplace=True)
all_copy_previous_row = all_copy_previous_row.diff(periods=1)
all_copy_previous_row.columns = [col_+'_difference'+'_previous' for col_ in all_copy_previous_row.columns.values]
all_copy_following_row['time_mean'] = all_copy_following_row[['B9','B10','B11']].std(axis=1)
all_copy_following_row.drop(['B9','B10','B11'], axis=1, inplace=True)
all_copy_following_row = all_copy_following_row.diff(periods=-1)
all_copy_following_row.columns = [col_+'_difference'+'_following' for col_ in all_copy_following_row.columns.values]
# all_copy_following_row['样本id_difference_following'] = all_copy_following_row['样本id_difference_following'].abs()
all_copy_following_row['样本id'] = list(ids)
[1.16更新B14特征处理]津南数字制造题目解读及部分思路~~有趣的特征的更多相关文章
- jetbrains idea/webstorm等(注册,激活,破解码,一起支持正版,最新可用)(2017.3.16更新)【转】
选择 License server (2017.3.16更新) http://idea.imsxm.com/ 详细请参考: http://www.cnblogs.com/ys-wuhan/p/584 ...
- ionic使用CardIO实现扫描银行卡功能(只能扫描16位以下,并且是浮雕数字)
在一些涉及支付功能的app,一般需要绑定银行卡,除了靠用户手动输入银行卡号,用手机扫描银行卡也是一种常用的手段,查阅了写资料,发现ionic有CardIO插件可以实现这个功能,就兴致冲冲去尝试,结果有 ...
- 什么是机器学习的特征工程?【数据集特征抽取(字典,文本TF-Idf)、特征预处理(标准化,归一化)、特征降维(低方差,相关系数,PCA)】
2.特征工程 2.1 数据集 2.1.1 可用数据集 Kaggle网址:https://www.kaggle.com/datasets UCI数据集网址: http://archive.ics.uci ...
- 【转载】webstorm11(注册,激活,破解,码,一起支持正版,最新可用)(2016.11.16更新)
很多人都发现 http://idea.lanyus.com/ 不能激活了 很多帖子说的 http://15.idea.lanyus.com/ 之类都用不了了 最近封的厉害仅作测试 选择 License ...
- react 16更新
1.render新的返回类型 render方法支持两种新的返回类型:数组(由React元素组成)和字符串 2.错误处理 16之前,组件在运行期间如果执行出错,就会阻塞整个应用的渲染,这时候只能刷新页面 ...
- HTML语义化(2016/3/16更新)
目录 什么是HTML语义化? 为什么要语义化 常用标签的语义 HTML5新元素 一.什么是HTML语义化? 简单来讲就是:每个标签做自己的事,使得能够被机器直接读懂. 二.为什么要语义化? 1.更容易 ...
- Java 小游戏 - 井字棋 v1.0 (初步完成) (2018.4.16更新)
井字棋游戏初步完成 实现功能:输入位置数据->打印棋盘->判断是否胜利->继续游戏/退出游戏 缺点:没有清屏函数 判断胜利方法太过无脑 package MYGAME; ...
- 2019微软Power BI 每月功能更新系列——Power BI 4月版本功能完整解读
Power BI4月份的更新对整个产品进行了重大更新.此版本增加了基于DAX表达式定义视觉效果标题和按钮URL的功能.本月Power BI也新增了许多新的连接器,现在可以使用几种预览连接器,包括Pow ...
- 机器学习入门-数值特征-进行多项式变化(将特征投影到高维度上) 1.PolynomialFeatures(将数据变化为多项式特征)
函数说明: 1. PolynomialFeatures(degree=2, interaction_only=False, include_bias=False) 参数说明:degree=2,表示多项 ...
随机推荐
- django管理后台添加admin账号
直接用命令行添加即可:python manage.py createsuperuser # python manage.py createsuperuser Username (leave blank ...
- Spring cloud info信息显示
父工程添加配置如下 <build> <finalName>microservicecloud</finalName> <resources> <r ...
- redis如何清除所有的key
redis比memcache好的地方之一,如果memcache,恐怕就得关掉重启了. 1 使用cli FLUSHDB 清除一个数据库,FLUSHALL清除整个redis数据. 2 使用shell re ...
- 建立一个php 基础类
在些PHP文件的时候,一般首先都是要先写一下基础类: 主要包括以下几个方面: 1.服务器的链接:包括主机,用户名,密码 2.数据库的选择:要操作哪个数据库 3.字符集的设置:设置什么样的编码 4.查询 ...
- Servlet基本
1.Webサーバ設定の「ディレクトリ一覧」機能 Webサーバの設定で「ディレクトリ一覧」機能を有効にすると.404 Not Found画面ではなく.ディレクトリ以下のファイルの一覧が表示されます.この ...
- CAS无锁技术
前言:关于同步,很多人都知道synchronized,Reentrantlock等加锁技术,这种方式也很好理解,是在线程访问的临界区资源上建立一个阻塞机制,需要线程等待 其它线程释放了锁,它才能运行. ...
- 发现一个好办法-有问题可以到UNITY论坛搜索
特别专业的问题,较新技术,可以到UNITY论坛搜索或发问,那里,或许会有UNITY的官方技术支持回答 https://forum.unity.com/threads/remote-deep-profi ...
- Linux tr命令使用方法
tr命令主要用于删除文件中控制字符或进行字符转换.本文主要介绍tr命令的基本语法和使用实例. tr基本语法 tr命令格式:tr [ -d ] [ -c ] [ -s ] [ 字符串1 ] [ 字符串2 ...
- [Shell]Bash基本功能:输入输出重定向
/*----------------------------------------------------------------------------------------------- @黑 ...
- Celery 图,[转]
https://www.cnblogs.com/forward-wang/p/5970806.html