Problem Statement

On a two-dimensional plane, there are N red points and N blue points. The coordinates of the i-th red point are (ai,bi), and the coordinates of the i-th blue point are (ci,di).

A red point and a blue point can form a friendly pair when, the x-coordinate of the red point is smaller than that of the blue point, and the y-coordinate of the red point is also smaller than that of the blue point.

At most how many friendly pairs can you form? Note that a point cannot belong to multiple pairs.

Constraints

  • All input values are integers.
  • 1≤N≤100
  • 0≤ai,bi,ci,di<2N
  • a1,a2,…,aN,c1,c2,…,cN are all different.
  • b1,b2,…,bN,d1,d2,…,dN are all different.

Input

Input is given from Standard Input in the following format:

N
a1 b1
a2 b2
:
aN bN
c1 d1
c2 d2
:
cN dN

Output

Print the maximum number of friendly pairs.


Sample Input 1

Copy
3
2 0
3 1
1 3
4 2
0 4
5 5

Sample Output 1

Copy
2

For example, you can pair (2,0) and (4,2), then (3,1) and (5,5).


Sample Input 2

Copy
3
0 0
1 1
5 2
2 3
3 4
4 5

Sample Output 2

Copy
2

For example, you can pair (0,0) and (2,3), then (1,1) and (3,4).


Sample Input 3

Copy
2
2 2
3 3
0 0
1 1

Sample Output 3

Copy
0

It is possible that no pair can be formed.


Sample Input 4

Copy
5
0 0
7 3
2 2
4 8
1 6
8 5
6 9
5 4
9 1
3 7

Sample Output 4

Copy
5

Sample Input 5

Copy
5
0 0
1 1
5 5
6 6
7 7
2 2
3 3
4 4
8 8
9 9

Sample Output 5

Copy
4
题意
给你n个二维坐标点A,再给n个二维坐标点B,如果B的x和y均大于A,这两个点可以匹配,求A的最大匹配
题解
一道二分图匹配的题,算是比较基础的题
当然这个题可以用贪心从小的开始,每次都选择B里与其最相近的元素
代码
 #include<bits/stdc++.h>
using namespace std; const int N=;
pair<int,int> p[N];
int vis[N],match[N];
int n;
int Find(int u)
{
for(int i=n+;i<=n+n;i++)
{
if(p[i].first>p[u].first&&p[i].second>p[u].second&&!vis[i])
{
vis[i]=;
if(!match[i]||Find(match[i]))
{
match[i]=u;
return ;
}
}
}
return ;
}
int main()
{
cin>>n;
for(int i=;i<=n+n;i++)
cin>>p[i].first>>p[i].second;
int ans=;
for(int i=;i<=n;i++)
{
memset(vis,,sizeof(vis));
if(Find(i))
ans++;
}
cout<<ans;
return ;
}

AtCoder Regular Contest 092 C - 2D Plane 2N Points(二分图匹配)的更多相关文章

  1. AtCoder Regular Contest 092

    AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...

  2. 【AtCoder Regular Contest 092】C.2D Plane 2N Points【匈牙利算法】

    C.2D Plane 2N Points 题意:给定N个红点二维坐标N个蓝点二维坐标,如果红点横纵坐标都比蓝点小,那么它们能够构成一组.问最多能构成多少组. 题解:把满足要求的红蓝点连线,然后就是匈牙 ...

  3. AtCoder Regular Contest 092 C D E F

    C - 2D Plane 2N Points 题意 二维平面上有\(N\)个红点,\(N\)个蓝点,一个红点和一个蓝点能配成一对当且仅当\(x_r<x_b\)且\(y_r<y_b\). 问 ...

  4. AtCoder Regular Contest 092 2D Plane 2N Points AtCoder - 3942 (匈牙利算法)

    Problem Statement On a two-dimensional plane, there are N red points and N blue points. The coordina ...

  5. Atcoder Regular Contest 092 D - Two Faced Edges(图论+bitset 优化)

    Atcoder 题面传送门 & 洛谷题面传送门 orz ymx,ymx ddw %%% 首先既然题目要我们判断强连通分量个数是否改变,我们首先就将原图 SCC 缩个点呗,缩完点后我们很自然地将 ...

  6. Atcoder Regular Contest 092 A 的改编

    原题地址 题目大意 给定平面上的 $n$ 个点 $p_1, \dots, p_n$ .第 $i$ 点的坐标为 $(x_i, y_i)$ .$x_i$ 各不相同,$y_i$ 也各不相同.若两点 $p_i ...

  7. AtCoder Regular Contest 092 B Two Sequences

    题目大意 给定两个长为 $n$ 个整数序列 $a_1, \dots, a_n$ 和 $b_1, \dots, b_n$ .求所有 $a_i + b_j$($1\le i, j\le n$)的 XOR ...

  8. 思维定势--AtCoder Regular Contest 092 D - Two Sequences

    $n \leq 100000$的俩序列,数字范围$2^{28}$,问所有$a_i+b_j$的$n^2$个数字的异或和. 这种东西肯定是按位考虑嘛,从低位开始然后补上进位.比如说第一位俩串分别有$c$个 ...

  9. AtCoder Regular Contest 092 Two Sequences AtCoder - 3943 (二进制+二分)

    Problem Statement You are given two integer sequences, each of length N: a1,…,aN and b1,…,bN. There ...

随机推荐

  1. package-info.java

    参考文章: http://blog.sina.com.cn/s/blog_93dc666c0101gzlr.html 对于package-info.java我们并不陌生,但又陌生. 在我们每次建立pa ...

  2. 工作记录 rfcn网络结构 caffe time测速和实际运行中速度不相等。

    现象: 用caffe time测试网络结构,前向传播是 8 ms左右, 实际集成后运行的时候,forward耗时大概4-5ms. 输入大小是一致的. 于是开始查这个问题. 最后定位到,差别在propo ...

  3. Java ssl认证记录

    听到有人在用,所以自己随便搜了搜试了下,这里就是简单记录 就是操作了一遍这篇博文 https://blog.csdn.net/a495614205/article/details/12648939 i ...

  4. c#与wpf的一些基础语法问题(摘用)

    1 .在vs里不同cs文件,位于同一个namespace,是什么情况. 答:http://msdn.microsoft.com/zh-cn/library/0d941h9d(v=vs.80).aspx ...

  5. Zabbix使用Omsa来监控Dell服务器的硬件状态

    OMSA(Open Manage Server Administrator)是Dell主机的硬件检测和维护软件 OpenManage系统管理方案是戴尔公司基于自主研发力量开发的IT系统管理解决方案,通 ...

  6. linux内核中的const成员是否可以修改?

    本文的基础知识:由于前半部分内容是转的,且不知道原文出处,没法给出原文地址,大家自行百度 const的实现机制 const究竟是如何实现的呢?对于声明为const的内置类型,例如int,short,l ...

  7. 【388】※ Some useful websites for learning Python

    Ref: Python Tips 1. *args and **kwargs 2. Debugging 3. Generators 4. Map, Filter and Reduce 5. set D ...

  8. 15.过滤器-基础.md

    目录 基础 实例 图解 核心API interface Filter过滤器接口 interface FilterConfig获取过滤器初始化信息 interface FilterChain 过滤器参数 ...

  9. 获取tensorflow中tensor的值

    tensorflow中的tensor值的获取: import tensorflow as tf #定义变量a a=tf.Variable([[[1,2,3],[4,5,6]],[[7,8,9],[10 ...

  10. jenkins commande not found

    解决方法: http://www.geekcome.com/content-10-3868-1.html 1.控制台执行 echo $PATH 把输出的这句话复制 2.jenkins->系统管理 ...