这几天一直再学习这些内容,也没有发一些博客,现在我觉得差不多了

首先基础是Miller_raibin随机化检测素数,顾名思义,随机化也就是有几率不对,但是很低,适用于大数快速检测,因为大数已经超出了我们打表的范围了

对于这个算法基础是费马小定理 和二次探测定理

1. Fermat定理:若n是奇素数,a是任意正整数(1≤ a≤ n−1),则 a^(n-1) ≡ 1 mod n。
2. 推演自Fermat定理(具体过程我没看懂,Orz), 如果n是一个奇素数,将n−1表示成2^s*r的形式,r是奇数,a与n是互素的任何随机整数,那么a^r ≡ 1 mod n或者对某个j (0 ≤ j≤ s−1, j∈Z) 等式a^(2jr) ≡ −1 mod n 成立。

他们的命题前提条件都是如果n是素数……,但是反过来却不一定对,但有可能对,我们只要把这个可能无限的放大,就好了

https://blog.csdn.net/semiwaker/article/details/60142102

首先快速乘法,快速幂

typedef long long ll;
ll retmin;
ll q_mul(ll a,ll b,ll c)
{
ll res = 0;
a %= c;
while(b)
{
if(b & 1) res = (res + a) % c;
b >>= 1;
a = (a + a) % c;
}
return res;
}
ll q_pow(ll a,ll b,ll c)
{
ll res = 1;
a %= c;
while(b)
{
if(b & 1)res = q_mul(res,a,c);
b >>= 1;
a = q_mul(a,a,c);
}
return res;
}

然后就是随机化验证,对于随机数我用的是网上的经验取值,2,7,61这样基本上达到100%

bool miller_rabin(ll n)
{
if(n == 2 || n == 7 || n ==61)return true; if(n < 2 || !(n & 1))return false; if(witness(2,n) && witness(7,n) && witness(61,n))
return true;
return false;
}

如何验证呢?

对于费马小定理,我们直接去看a的n-1次方有点太暴力,最优的就是把以上两个定理的逆定理合起来一起验证!

我们考虑把费马小定理中的n - 1分解为 2^t*u

ll u = n - 1;
int t = 0; while(!(u & 1))
{
u >>= 1;
t++;
}

把2分解出来才能取构造平方~~去验证二次探测定理

更详细的解释还得看这个大佬的博客

if(u == 1 || u == n - 1)return true;

    while(t--)
{
u = q_mul(u,u,n);
if(u == n - 1)
return true;
}
return false;

如果一旦出现n-1的值那么代表提供了二次探测,一开始值若为1代表提供了费马小,所以对于这次测试,它能够通过

接下来我们进行大数分解算法,其实主要目的就是去找它的因子

void Find(ll n)
{
if(n == 1)return; if(miller_rabin(n))
{
retmin = min(retmin,n);
return;
} ll p = n; while( p >= n)
p = pollard_rho(n,rand() % (n - 1) + 1);
Find(p);
Find(n / p);
}

如代码,我们尝试去找n的因子,前面特判一些,如果n不是素数,那就有因子,我们用pollard算法去寻找

一开始我们找因子就是一个一个去试,效率非常低,但是我们如果能够利用组合,我提供一堆数,两两组合求差,用差去尝试,那样效率会大大提升,你可能觉得没什么区别,但是你可以去查一下生日悖论

他很好的说明了这个算法的高效性

再优化一点呢,就是随机数我们有自己的生成机制和步长限制(循环),所以,

ll pollard_rho(ll n,ll c)
{
ll x,y,d,i = 1,k = 2; x = rand() % ( n - 1) + 1;
y = x;
while(1)
{
x = (q_mul(x,x,n) + c) % n;
d = gcd((x - y + n) % n,n); if(d > 1 && d < n)return d; if(x == y)return n; if(++i == k)
{
k <<= 1;
y = x;
}
}
}

如果x == y代表我们随机选择的参数c不好,达到了循环,所以重新进行寻找

Miller_raibin算法随机化检测素数 & Pollar_rho 算法分解大数的更多相关文章

  1. 【BZOJ-3667】Rabin_Miller算法 随机化判素数

    3667: Rabin-Miller算法 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 983  Solved: 302[Submit][Status ...

  2. Miller_Rabbin算法判断大素数,Pollard_rho算法进行质因素分解

    Miller-rabin算法是一个用来快速判断一个正整数是否为素数的算法.它利用了费马小定理,即:如果p是质数,且a,p互质,那么a^(p-1) mod p恒等于1.也就是对于所有小于p的正整数a来说 ...

  3. Miller-Rabin素数测试算法(POJ1811Prime Test)

    题目链接:http://poj.org/problem?id=1811 题目解析:2<=n<2^54,如果n是素数直接输出,否则求N的最小质因数. 求大整数最小质因数的算法没看懂,不打算看 ...

  4. Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结

    Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结 1.1. 原理,主要使用像素模糊后的差别会变小1 1.2. 具体流程1 1.3. 提升性能 可以使用采样法即可..1 ...

  5. Atitit 图像清晰度 模糊度 检测 识别 评价算法 原理

    Atitit 图像清晰度 模糊度 检测 识别 评价算法 原理 1.1. 图像边缘一般都是通过对图像进行梯度运算来实现的1 1.2. Remark: 1 1.3.  1.失焦检测. 衡量画面模糊的主要方 ...

  6. algorithm@ Sieve of Eratosthenes (素数筛选算法) & Related Problem (Return two prime numbers )

    Sieve of Eratosthenes (素数筛选算法) Given a number n, print all primes smaller than or equal to n. It is ...

  7. 记一次使用快速幂与Miller-Rabin的大素数生成算法

    大家都知道RSA的加密的安全性就是能够找到一个合适的大素数,而现在判断大素数的办法有许多,比如Fermat素性测试或者Miller-Rabin素性测试,而这里我用了Miller-Rabin素性测试的算 ...

  8. Miller-Rabin​素数测试算法

    \(Miller-Rabin\)​素数测试 用途 判断整数\(n\)是否是质数,在\(n\)较小的情况下,可以使用试除法,时间复杂度为\(O(\sqrt n)\).但当\(n\)的值较大的时候,朴素的 ...

  9. 【58】目标检测之YOLO 算法

    YOLO 算法(Putting it together: YOLO algorithm) 你们已经学到对象检测算法的大部分组件了,在这个笔记里,我们会把所有组件组装在一起构成YOLO对象检测算法.   ...

随机推荐

  1. C++中find_if

    总结:find_if针对查找的对象中包含指针需要进行比较 find则更偏向于普通的数值或者字符比较 两者都可以应用于自定义的类,只需在类中重载==运载符 函数调用符()说白了其实就是代替函数指针,调用 ...

  2. JoyOI1935 导弹防御塔

    原题链接 首先可以二分答案,然后考虑检验答案. 我们可以对炮塔进行拆点,即能发射\(x\)颗导弹就拆成\(n\times x\)个点,作为一个集合,另一个集合则是\(m\)个侵入者,然后对于能在剩余时 ...

  3. 效率类APP原型制作分享----Timeglass

    本原型由国产Mockplus(原型工具)和iDoc(智能标注,一键切图工具)提供. 主要页面:启动页面.主页.添加事件页面.设置页面等. mp文件下载:点击这里 在线预览:http://run.moc ...

  4. On the internet, nobody known you are a dog !

  5. SparkStreaming updateStateByKey 保存记录信息

    )(_+_) ) 查看是否存在,如果存在直接获取 )) ssc.checkpoint() )) //使用updateStateByKey 来更新状态 val stateDstream = wordDs ...

  6. spring 学习 一 spring 介绍

    Spring 是一个开源框架,是为了解决企业应用程序开发复杂性而创建的.框架的主要优势之一就是其分层架构,分层架构允许您选择使用哪一个组件,同时为 J2EE 应用程序开发提供集成的框架. Spring ...

  7. spring boot 实现mybatis拦截器

    spring boot 实现mybatis拦截器 项目是个报表系统,服务端是简单的Java web架构,直接在请求参数里面加了个query id参数,就是mybatis mapper的query id ...

  8. (19)3 moons and a planet that could have alien life

    https://www.ted.com/talks/james_green_3_moons_and_a_planet_that_could_have_alien_life/transcript00:1 ...

  9. CentOS 7 / RHEL 7 运行单用户模式进行root的密码重置

    步骤一,开机时随便按下键盘,进入以下菜单 步骤二: 选择第一项,按e键进行修改 步骤三,定位到 ro(  linux 16 or linuxefi  ) 步骤四:把ro改成 “rw init=/sys ...

  10. Jpa 报错 :HTTP Status 400 - Required String parameter 'xx' is not present

    一.问题描述 使用Springboot JPA 做分页查询,报错Required String parameter 'xx' is not present,后端未接受到请求 二.解决方案: 使用的请求 ...