http://172.20.6.3/Problem_Show.asp?id=2042

题意:求一个次数界为n的多项式在模P并模x^m的意义下的逆元。P=7*17*2^23+1。

多项式逆元的含义以及求逆元的方法:http://blog.miskcoo.com/2015/05/polynomial-inverse

公式推导一下。主要还是NTT的使用,我NTT写错了调了半天,太zz了。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<complex>
using namespace std;
#define LL long long
const LL P=(LL)**(<<)+;
const int maxn=;
LL a[maxn]={},b[maxn]={},e[maxn]={},zz[][maxn]={};
int bel[maxn]={};
int bt,s,tot=;
LL mpow(LL x,LL k){
if(k<){x=mpow(x,P-);k=-k;}
LL z=;
while(k){
if(k&)z=(z*x)%P;
x=(x*x)%P;
k/=;
}return z;
}
inline void getit(){ for(int i=;i<s;i++)bel[i]=((bel[i>>]>>)|((i&)<<(bt-))); }
inline void ntt(LL *c,int n,int dft){
for(int i=;i<n;i++)if(bel[i]>i)swap(c[bel[i]],c[i]);
for(int step=;step<n;step<<=){
LL w=mpow(,((P-)/(step*))*dft);
for(int j=;j<n;j+=(step<<)){
LL z=;
for(int i=j;i<j+step;++i){
LL x=c[i],y=(c[i+step]*z)%P;
c[i]=(x+y)%P;
c[i+step]=((x-y)%P+P)%P;
z=(z*w)%P;
}
}
}
if(dft==-){
LL mon=mpow(n,P-);
for(int i=;i<n;i++)c[i]=(c[i]*mon)%P;
}
}
inline void dontt(LL *c,LL *d,int x,int y){
bt=;s=;int z=x+y-;
for(;s<z;++bt)s<<=;
getit();
ntt(c,s,);ntt(d,s,);
for(int i=;i<s;i++)c[i]=(c[i]*d[i])%P;
ntt(c,s,-);ntt(d,s,);
}
inline void doit(int n,int m){
if(m==){++tot; zz[tot][]=mpow(a[],P-); return ;}
doit(n,(m+)/);int siz=(m+)/; ++tot;
for(int i=;i<s;i++)e[i]=b[i]=bel[i]=;
for(int i=;i<siz;i++){zz[tot][i]=(zz[tot-][i]*)%P;b[i]=zz[tot-][i];}
for(int i=min(n,m)-;i>=;--i)e[i]=a[i];
dontt(zz[tot-],b,siz,siz); siz=siz+siz-;
dontt(zz[tot-],e,siz,min(n,m));
for(int i=;i<m;i++)zz[tot][i]=((zz[tot][i]-zz[tot-][i])%P+P)%P;
}
int main(){
//freopen("a.in","r",stdin);
int n,m;scanf("%d%d",&n,&m);
for(int i=;i<n;i++){scanf("%lld",&a[i]);a[i]=((a[i]%P)+P)%P;}
doit(n,m);
for(int i=;i<m;i++)printf("%lld ",zz[tot][i]);
printf("\n");
return ;
}

JZYZOJ 2042 多项式逆元 NTT 多项式的更多相关文章

  1. luoguP4512 【模板】多项式除法 NTT+多项式求逆+多项式除法

    Code: #include<bits/stdc++.h> #define maxn 300000 #define ll long long #define MOD 998244353 # ...

  2. 【BZOJ3625】【CF438E】小朋友和二叉树 NTT 生成函数 多项式开根 多项式求逆

    题目大意 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\ldots ,c_n\).如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合\(\{c_1,c_2,\ldots ,c_n\ ...

  3. [拉格朗日反演][FFT][NTT][多项式大全]详解

    1.多项式的两种表示法 1.系数表示法 我们最常用的多项式表示法就是系数表示法,一个次数界为\(n\)的多项式\(S(x)\)可以用一个向量\(s=(s_0,s_1,s_2,\cdots,s_n-1) ...

  4. NTT+多项式求逆+多项式开方(BZOJ3625)

    定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\fr ...

  5. 【bzoj3456】城市规划 容斥原理+NTT+多项式求逆

    题目描述 求出n个点的简单(无重边无自环)无向连通图数目mod 1004535809(479 * 2 ^ 21 + 1). 输入 仅一行一个整数n(<=130000) 输出 仅一行一个整数, 为 ...

  6. 洛谷5月月赛T30212 玩游戏 【分治NTT + 多项式求ln】

    题目链接 洛谷T30212 题解 式子很容易推出来,二项式定理展开后对于\(k\)的答案即可化简为如下: \[k!(\sum\limits_{i = 0}^{k} \frac{\sum\limits_ ...

  7. 2019.01.01 bzoj3625:小朋友和二叉树(生成函数+多项式求逆+多项式开方)

    传送门 codeforces传送门codeforces传送门codeforces传送门 生成函数好题. 卡场差评至今未过 题意简述:nnn个点的二叉树,每个点的权值KaTeX parse error: ...

  8. 【BZOJ3625】【codeforces438E】小朋友和二叉树 生成函数+多项式求逆+多项式开根

    首先,我们构造一个函数$G(x)$,若存在$k∈C$,则$[x^k]G(x)=1$. 不妨设$F(x)$为最终答案的生成函数,则$[x^n]F(x)$即为权值为$n$的神犇二叉树个数. 不难推导出,$ ...

  9. FFT模板 生成函数 原根 多项式求逆 多项式开根

    FFT #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> ...

随机推荐

  1. Golang的交互模式进阶-读取用户的输入

    Golang的交互模式进阶-读取用户的输入 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 读写数据除了 fmt 和 os 包,我们还需要用到 bufio 包来处理缓冲的输入和输出. ...

  2. IIS发布MVC出错

    一个MVC网站在发布到IIS上时,出现了这个问题: 然后解决办法: 然后应用程序池那里,自己点右键添加一个 新建完应用池之后选中点高级设置 最后,添加网站,添加网站的时候应用程序池选择自己刚刚新建的那 ...

  3. Kafka 0.8 NIO通信机制

    一.Kafka通信机制的整体结构 同时,这也是SEDA多线程模型. 对于broker来说,客户端连接数量有限,不会频繁新建大量连接.因此一个Acceptor thread线程处理新建连接绰绰有余. K ...

  4. bzoj千题计划184:bzoj1261: [SCOI2006]zh_tree

    http://www.lydsy.com/JudgeOnline/problem.php?id=1261 dp[l][r][dep]  区间[l,r]内的节点,根在dep层的最小代价 枚举根i,dp[ ...

  5. day64_SpringMVC学习笔记_02

    1.springmvc对多视图的支持 (1)导入xml格式视图支持的jar包   注意:springmvc本身就支持xml格式,所以不用导入其他支持的jar包了. (2)在springmvc.xml中 ...

  6. 强悍的CSS工具组合:Blueprint, Sass, Compass

    掌握CSS是每个Web开发者的基本要求,虽然CSS本身并不复杂,但怎样写出支持所有主流浏览器(特别是IE)的CSS,以及在大型网站中如何有序地组织好CSS结构却是一个相当棘手的问题.我更多的是一个开发 ...

  7. Hash::make与Hash::check

    调用方法之前要先去引用: use Illuminate\Support\Facades\Hash; 可以调用 Hash 门面上的 make 方法对存储密码进行哈希: $pwd = Hash::make ...

  8. Jmeter如何保持cookie,让所有请求都能用同一个cookie,免去提取JSESSIONID

    近期有柠檬班的学生找到华华,问了一个问题,就是利用Jmeter做接口测试的时候,如何提取头部的JSESSIONID然后传递到下一个请求,继续完成当前用户的请求. 其实,关于这个问题有三种种解决方法: ...

  9. linux 查看有哪些service

    一.利用进程来查看命令里 ps -aux | grep xxx 是查看某个进程或者服务是否存在.二.利用chkconfig配置工具chkconfig --list 可以列出所有的服务在各个runlev ...

  10. 恶意代码分析实战-确认EXE什么时候编译的

    场景 确认开源的后门在中毒机器上是什么版本,具有什么功能. 思路 1.查看样本PE里的编译时间 2.对照开源后门里组件的编译时间 技术点 查看NT头-TimeDateStamp struct IMAG ...