Famil Door’s City map looks like a tree (undirected connected acyclic graph) so other people call it Treeland. There are n intersections
in the city connected by n - 1 bidirectional roads.

There are m friends of Famil Door living in the city. The i-th
friend lives at the intersection ui and
works at the intersection vi.
Everyone in the city is unhappy because there is exactly one simple path between their home and work.

Famil Door plans to construct exactly one new road and he will randomly choose one among n·(n - 1) / 2 possibilities. Note,
that he may even build a new road between two cities that are already connected by one.

He knows, that each of his friends will become happy, if after Famil Door constructs a new road there is a path from this friend home to work and back that doesn't visit the same road twice. Formally, there is a simple cycle containing both ui and vi.

Moreover, if the friend becomes happy, his pleasure is equal to the length of such path (it's easy to see that it's unique). For each of his friends Famil Door wants to know his expected pleasure, that is the expected length of the cycle containing both ui and vi if
we consider only cases when such a cycle exists.

Input

The first line of the input contains integers n and m (2 ≤ n,  m ≤ 100 000) —
the number of the intersections in the Treeland and the number of Famil Door's friends.

Then follow n - 1 lines describing bidirectional roads. Each of them contains two integers ai and bi (1 ≤ ai, bi ≤ n) —
the indices of intersections connected by the i-th road.

Last m lines of the input describe Famil Door's friends. The i-th
of these lines contain two integers ui and vi (1 ≤ ui, vi ≤ n, ui ≠ vi) —
indices of intersections where the i-th friend lives and works.

Output

For each friend you should print the expected value of pleasure if he will be happy. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b.
The checker program will consider your answer correct, if .

Examples
input
4 3
2 4
4 1
3 2
3 1
2 3
4 1
output
4.00000000
3.00000000
3.00000000
input
3 3
1 2
1 3
1 2
1 3
2 3
output
2.50000000
2.50000000
3.00000000

题意:给你一棵节点数为n的树,随机地在树上的任意两个点连一条边,给你m个询问,每次询问两个点,问连一条边后如果这两个点能在简单环中,简单环的期望是多少。
简单环即这两个点在一个环上,这个环是没有重边的。
思路:这里先设置几个变量dep[i]:i节点的深度,这里记dep[0]=0,dep[1]=1;sz[i]:i节点的子树的节点总数;f[i][j]:i节点的2^j倍父亲;sdown[i]:i节点子树中的所有点到i节点的距离和;sall[i]:所有点到i节点的距离和;t=lca(u,v).
     先考虑lca(u,v)!=u && lca(u,v)!=v的情况,想要使得u,v都在简单环中,那么连边的两个端点一定是一个在u的子树中,另一个在v的子树中,且连边的方案数为sz[u]*sz[v],那么我们得到的期望值是sdown[u]/sz[u]+sdown[v]/sz[v]+1+dep[u]+dep[v]-2*dep[t].这里dep[u]+dep[v]-2*dep[t]+1是每一个形成的简单环都有的长度,所以可以先加上去.
     然后考虑lca(u,v)==u || lca(u,v)==v的情况,不妨假设lca(u,v)=v,那么连边的两个端点一端一定在u的子树中,另一端在v的上面,即树上的所有点除去不包括u这个节点的子树,我们得到的期望值是sdown[u]/sz[u]+(sall[v]-sdown[v1]-sz[v1])/(n-sz[v1]) (v1是u,v路径上v的子节点).
第一次dfs先求出sdown[i],然后第二次dfs就能求出sall[i]了.


#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 100050 int sz[maxn],dep[maxn],f[maxn][23];
ll sdown[maxn],sall[maxn];
int n;
struct edge{
int to,next;
}e[2*maxn];
int first[maxn];
void dfs1(int u,int father,int deep)
{
int i,j,v;
dep[u]=dep[father]+1;
sz[u]=1;sdown[u]=0;
for(i=first[u];i!=-1;i=e[i].next){
v=e[i].to;
if(v==father)continue;
f[v][0]=u;
dfs1(v,u,dep[u]);
sz[u]+=sz[v];
sdown[u]+=sdown[v]+sz[v];
}
} void dfs2(int u,int father)
{
int i,j,v;
for(i=first[u];i!=-1;i=e[i].next){
v=e[i].to;
if(v==father)continue;
sall[v]=sall[u]+n-2*sz[v]; //这里是主要的公式,可以这样理解:所有点到父亲节点u的距离和sall[u]已经算出来了,那么算v这个节点的时候,不在v子树范围内的点到v的距离都多了1,所以加上n-sz[v],v的子树的点到v的距离都减少了1,所以要减去sz[v].
dfs2(v,u);
}
}
void init()
{
dep[0]=0;
dfs1(1,0,0);
sall[1]=sdown[1];
dfs2(1,0);
}
int lca(int x,int y){
int i;
if(dep[x]<dep[y]){
swap(x,y);
}
for(i=20;i>=0;i--){
if(dep[f[x][i] ]>=dep[y]){
x=f[x][i];
}
}
if(x==y)return x;
for(i=20;i>=0;i--){
if(f[x][i]!=f[y][i]){
x=f[x][i];y=f[y][i];
}
}
return f[x][0];
}
int up(int u,int deep)
{
int i,j;
for(i=20;i>=0;i--){
if((1<<i)<=deep){
u=f[u][i];
deep-=(1<<i);
}
}
return u; }
int main()
{
int m,i,j,tot,c,d,v,u,k;
double sum;
while(scanf("%d%d",&n,&m)!=EOF)
{
tot=0;
memset(first,-1,sizeof(first));
for(i=1;i<=n-1;i++){
scanf("%d%d",&c,&d);
tot++;
e[tot].next=first[c];e[tot].to=d;
first[c]=tot; tot++;
e[tot].next=first[d];e[tot].to=c;
first[d]=tot;
}
init();
for(k=1;k<=20;k++){
for(i=1;i<=n;i++){
f[i][k]=f[f[i][k-1]][k-1];
}
}
for(i=1;i<=m;i++){
scanf("%d%d",&u,&v);
int t=lca(u,v);
sum=(double)(dep[u]+dep[v]-2*dep[t])+1;
if(t==u || t==v){
if(t==u)swap(u,v);
int v1=up(u,dep[u]-dep[v]-1);
ll num1=sall[v]-sdown[v1]-sz[v1];
sum+=(double)sdown[u]/(double)sz[u]+(double)(num1)/(double)(n-sz[v1]);
printf("%.10f\n",sum);
}
else{
sum+=(double)sdown[u]/(double)sz[u]+(double)sdown[v]/(double)sz[v];
printf("%.10f\n",sum);
}
}
}
return 0;
}

Codeforces Round #343 (Div. 2) E. Famil Door and Roads (树形dp,lca)的更多相关文章

  1. Codeforces Round #343 (Div. 2) E. Famil Door and Roads lca 树形dp

    E. Famil Door and Roads 题目连接: http://www.codeforces.com/contest/629/problem/E Description Famil Door ...

  2. Codeforces Round #343 (Div. 2) E. Famil Door and Roads

    题目链接: http://www.codeforces.com/contest/629/problem/E 题解: 树形dp. siz[x]为x这颗子树的节点个数(包括x自己) dep[x]表示x这个 ...

  3. Codeforces Round #384 (Div. 2)D - Chloe and pleasant prizes 树形dp

    D - Chloe and pleasant prizes 链接 http://codeforces.com/contest/743/problem/D 题面 Generous sponsors of ...

  4. Codeforces Round #551 (Div. 2) D. Serval and Rooted Tree (树形dp)

    题目:http://codeforces.com/contest/1153/problem/D 题意:给你一棵树,每个节点有一个操作,0代表取子节点中最小的那个值,1代表取子节点中最大的值,叶子节点的 ...

  5. Codeforces Round #419 (Div. 2) E. Karen and Supermarket(树形dp)

    http://codeforces.com/contest/816/problem/E 题意: 去超市买东西,共有m块钱,每件商品有优惠卷可用,前提是xi商品的优惠券被用.问最多能买多少件商品? 思路 ...

  6. Codeforces Round #343 (Div. 2) C. Famil Door and Brackets dp

    C. Famil Door and Brackets 题目连接: http://www.codeforces.com/contest/629/problem/C Description As Fami ...

  7. Codeforces Round #343 (Div. 2) C. Famil Door and Brackets

    题目链接: http://codeforces.com/contest/629/problem/C 题意: 长度为n的括号,已经知道的部分的长度为m,现在其前面和后面补充‘(',或')',使得其长度为 ...

  8. Codeforces Round #263 (Div. 2) D. Appleman and Tree(树形DP)

    题目链接 D. Appleman and Tree time limit per test :2 seconds memory limit per test: 256 megabytes input ...

  9. Codeforces Round #564 (Div. 2) D. Nauuo and Circle(树形DP)

    D. Nauuo and Circle •参考资料 [1]:https://www.cnblogs.com/wyxdrqc/p/10990378.html •题意 给出你一个包含 n 个点的树,这 n ...

随机推荐

  1. 【JavaWeb】JSP 页面

    JSP 页面 简介 JSP(Java Server Pages),即 Java 的服务器页面.它的主要作用是代替 Servlet 程序回传 HTML 页面的数据,因为 Servlet 程序回传 HTM ...

  2. python3.6安装教程

    Python代码要运行,必须要有Python解释器.Python3.x的版本是没有什么区别的,这里以3.6版本来演示安装的过程.这里只介绍Windows环境下的安装. 下载安装程序 Python官方的 ...

  3. DG主备切换遇到not allwod或者RESOLVABLE GAP解决办法

    今天做switchover,环境是11.2.0.3+OEL5.7,开始时主备库状态都是正常的,符合直接切换条件: 主库: SQL> select open_mode,database_role, ...

  4. 【Linux】ssh远程连接到指定ip的指定用户上

    通过ssh可以远程连接到其他的机器上,但是如果只想连接到指定的用户的话 需要这样做: -l 选项 (是L不是I,小写) ssh IP -l 用户名 这里的ip如果在hosts下就可以直接输入域名或者主 ...

  5. 【Linux】自建回收站

    linux rm命令是即刻删除的,而且挺多人喜欢加上-f强制命令,更暴力的是删除文件夹直接 rm -rf ,这样子代表你执行完后,就完全被干掉了. 还是推荐在linux下设置回收站,写一个shell脚 ...

  6. kubernets之向外部应用暴露应用

    一  通过NodePort来暴露服务 前面已经介绍的服务的一些作用,例如将集群内部的应用暴露给集群内部的pod使用,将外部的应用通过服务暴露给内部应用使用,但是服务最大的作用不仅仅是这些 而是将集群内 ...

  7. oracle RAC和RACOneNode之间的转换

    Convert RAC TO RACOneNode 1.查看资源状态 [grid@rac01 ~]$ crsctl status res -t 从这里看到,数据库的名字叫racdb 2.查看实例 [o ...

  8. C# 合并和拆分PDF文件

    一.合并和拆分PDF文件的方式 PDF文件使用了工业标准的压缩算法,易于传输与储存.它还是页独立的,一个PDF文件包含一个或多个"页",可以单独处理各页,特别适合多处理器系统的工作 ...

  9. C++ STL 栈和队列

    栈和队列 头文件 #include<queue> // 队列 #include<stack> //栈 定义方式 //参数就是数据类型 stack<int> s; q ...

  10. Java基础复习4

    选择排序(擂台排序): public class demo1 {     public static void main(String[] args) {          // TODO Auto- ...