Famil Door’s City map looks like a tree (undirected connected acyclic graph) so other people call it Treeland. There are n intersections
in the city connected by n - 1 bidirectional roads.

There are m friends of Famil Door living in the city. The i-th
friend lives at the intersection ui and
works at the intersection vi.
Everyone in the city is unhappy because there is exactly one simple path between their home and work.

Famil Door plans to construct exactly one new road and he will randomly choose one among n·(n - 1) / 2 possibilities. Note,
that he may even build a new road between two cities that are already connected by one.

He knows, that each of his friends will become happy, if after Famil Door constructs a new road there is a path from this friend home to work and back that doesn't visit the same road twice. Formally, there is a simple cycle containing both ui and vi.

Moreover, if the friend becomes happy, his pleasure is equal to the length of such path (it's easy to see that it's unique). For each of his friends Famil Door wants to know his expected pleasure, that is the expected length of the cycle containing both ui and vi if
we consider only cases when such a cycle exists.

Input

The first line of the input contains integers n and m (2 ≤ n,  m ≤ 100 000) —
the number of the intersections in the Treeland and the number of Famil Door's friends.

Then follow n - 1 lines describing bidirectional roads. Each of them contains two integers ai and bi (1 ≤ ai, bi ≤ n) —
the indices of intersections connected by the i-th road.

Last m lines of the input describe Famil Door's friends. The i-th
of these lines contain two integers ui and vi (1 ≤ ui, vi ≤ n, ui ≠ vi) —
indices of intersections where the i-th friend lives and works.

Output

For each friend you should print the expected value of pleasure if he will be happy. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b.
The checker program will consider your answer correct, if .

Examples
input
4 3
2 4
4 1
3 2
3 1
2 3
4 1
output
4.00000000
3.00000000
3.00000000
input
3 3
1 2
1 3
1 2
1 3
2 3
output
2.50000000
2.50000000
3.00000000

题意:给你一棵节点数为n的树,随机地在树上的任意两个点连一条边,给你m个询问,每次询问两个点,问连一条边后如果这两个点能在简单环中,简单环的期望是多少。
简单环即这两个点在一个环上,这个环是没有重边的。
思路:这里先设置几个变量dep[i]:i节点的深度,这里记dep[0]=0,dep[1]=1;sz[i]:i节点的子树的节点总数;f[i][j]:i节点的2^j倍父亲;sdown[i]:i节点子树中的所有点到i节点的距离和;sall[i]:所有点到i节点的距离和;t=lca(u,v).
     先考虑lca(u,v)!=u && lca(u,v)!=v的情况,想要使得u,v都在简单环中,那么连边的两个端点一定是一个在u的子树中,另一个在v的子树中,且连边的方案数为sz[u]*sz[v],那么我们得到的期望值是sdown[u]/sz[u]+sdown[v]/sz[v]+1+dep[u]+dep[v]-2*dep[t].这里dep[u]+dep[v]-2*dep[t]+1是每一个形成的简单环都有的长度,所以可以先加上去.
     然后考虑lca(u,v)==u || lca(u,v)==v的情况,不妨假设lca(u,v)=v,那么连边的两个端点一端一定在u的子树中,另一端在v的上面,即树上的所有点除去不包括u这个节点的子树,我们得到的期望值是sdown[u]/sz[u]+(sall[v]-sdown[v1]-sz[v1])/(n-sz[v1]) (v1是u,v路径上v的子节点).
第一次dfs先求出sdown[i],然后第二次dfs就能求出sall[i]了.


#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 100050 int sz[maxn],dep[maxn],f[maxn][23];
ll sdown[maxn],sall[maxn];
int n;
struct edge{
int to,next;
}e[2*maxn];
int first[maxn];
void dfs1(int u,int father,int deep)
{
int i,j,v;
dep[u]=dep[father]+1;
sz[u]=1;sdown[u]=0;
for(i=first[u];i!=-1;i=e[i].next){
v=e[i].to;
if(v==father)continue;
f[v][0]=u;
dfs1(v,u,dep[u]);
sz[u]+=sz[v];
sdown[u]+=sdown[v]+sz[v];
}
} void dfs2(int u,int father)
{
int i,j,v;
for(i=first[u];i!=-1;i=e[i].next){
v=e[i].to;
if(v==father)continue;
sall[v]=sall[u]+n-2*sz[v]; //这里是主要的公式,可以这样理解:所有点到父亲节点u的距离和sall[u]已经算出来了,那么算v这个节点的时候,不在v子树范围内的点到v的距离都多了1,所以加上n-sz[v],v的子树的点到v的距离都减少了1,所以要减去sz[v].
dfs2(v,u);
}
}
void init()
{
dep[0]=0;
dfs1(1,0,0);
sall[1]=sdown[1];
dfs2(1,0);
}
int lca(int x,int y){
int i;
if(dep[x]<dep[y]){
swap(x,y);
}
for(i=20;i>=0;i--){
if(dep[f[x][i] ]>=dep[y]){
x=f[x][i];
}
}
if(x==y)return x;
for(i=20;i>=0;i--){
if(f[x][i]!=f[y][i]){
x=f[x][i];y=f[y][i];
}
}
return f[x][0];
}
int up(int u,int deep)
{
int i,j;
for(i=20;i>=0;i--){
if((1<<i)<=deep){
u=f[u][i];
deep-=(1<<i);
}
}
return u; }
int main()
{
int m,i,j,tot,c,d,v,u,k;
double sum;
while(scanf("%d%d",&n,&m)!=EOF)
{
tot=0;
memset(first,-1,sizeof(first));
for(i=1;i<=n-1;i++){
scanf("%d%d",&c,&d);
tot++;
e[tot].next=first[c];e[tot].to=d;
first[c]=tot; tot++;
e[tot].next=first[d];e[tot].to=c;
first[d]=tot;
}
init();
for(k=1;k<=20;k++){
for(i=1;i<=n;i++){
f[i][k]=f[f[i][k-1]][k-1];
}
}
for(i=1;i<=m;i++){
scanf("%d%d",&u,&v);
int t=lca(u,v);
sum=(double)(dep[u]+dep[v]-2*dep[t])+1;
if(t==u || t==v){
if(t==u)swap(u,v);
int v1=up(u,dep[u]-dep[v]-1);
ll num1=sall[v]-sdown[v1]-sz[v1];
sum+=(double)sdown[u]/(double)sz[u]+(double)(num1)/(double)(n-sz[v1]);
printf("%.10f\n",sum);
}
else{
sum+=(double)sdown[u]/(double)sz[u]+(double)sdown[v]/(double)sz[v];
printf("%.10f\n",sum);
}
}
}
return 0;
}

Codeforces Round #343 (Div. 2) E. Famil Door and Roads (树形dp,lca)的更多相关文章

  1. Codeforces Round #343 (Div. 2) E. Famil Door and Roads lca 树形dp

    E. Famil Door and Roads 题目连接: http://www.codeforces.com/contest/629/problem/E Description Famil Door ...

  2. Codeforces Round #343 (Div. 2) E. Famil Door and Roads

    题目链接: http://www.codeforces.com/contest/629/problem/E 题解: 树形dp. siz[x]为x这颗子树的节点个数(包括x自己) dep[x]表示x这个 ...

  3. Codeforces Round #384 (Div. 2)D - Chloe and pleasant prizes 树形dp

    D - Chloe and pleasant prizes 链接 http://codeforces.com/contest/743/problem/D 题面 Generous sponsors of ...

  4. Codeforces Round #551 (Div. 2) D. Serval and Rooted Tree (树形dp)

    题目:http://codeforces.com/contest/1153/problem/D 题意:给你一棵树,每个节点有一个操作,0代表取子节点中最小的那个值,1代表取子节点中最大的值,叶子节点的 ...

  5. Codeforces Round #419 (Div. 2) E. Karen and Supermarket(树形dp)

    http://codeforces.com/contest/816/problem/E 题意: 去超市买东西,共有m块钱,每件商品有优惠卷可用,前提是xi商品的优惠券被用.问最多能买多少件商品? 思路 ...

  6. Codeforces Round #343 (Div. 2) C. Famil Door and Brackets dp

    C. Famil Door and Brackets 题目连接: http://www.codeforces.com/contest/629/problem/C Description As Fami ...

  7. Codeforces Round #343 (Div. 2) C. Famil Door and Brackets

    题目链接: http://codeforces.com/contest/629/problem/C 题意: 长度为n的括号,已经知道的部分的长度为m,现在其前面和后面补充‘(',或')',使得其长度为 ...

  8. Codeforces Round #263 (Div. 2) D. Appleman and Tree(树形DP)

    题目链接 D. Appleman and Tree time limit per test :2 seconds memory limit per test: 256 megabytes input ...

  9. Codeforces Round #564 (Div. 2) D. Nauuo and Circle(树形DP)

    D. Nauuo and Circle •参考资料 [1]:https://www.cnblogs.com/wyxdrqc/p/10990378.html •题意 给出你一个包含 n 个点的树,这 n ...

随机推荐

  1. 关于使用th:text获取不到值

    今天在使用thymeleaf模板引擎整合SpringBoot时,对于从controller层传递过来的参数"message",无法获取. 控制层代码如下: @PostMapping ...

  2. 天梯赛练习 L3-008 喊山 (30分) bfs搜索

    题目分析: 本题是一题比较简单的bfs搜索题,首先由于数据给的比较多不能直接开二维数组存放,而是用了vector的动态的二维数组的形式存放,对于每个出发点,我们bfs向四周搜索,标记搜索过的点,遇到搜 ...

  3. leetcode 1240. 铺瓷砖(回溯,DFS)

    题目链接 https://leetcode-cn.com/problems/tiling-a-rectangle-with-the-fewest-squares/ 题意: 用尽可能少的正方形瓷砖来铺地 ...

  4. LeetCode653. 两数之和 IV - 输入 BST

    题目 直接暴力 1 class Solution { 2 public: 3 vector<int>ans; 4 bool findTarget(TreeNode* root, int k ...

  5. oracle编译表上失效USERDBY脚本

    对表进行DLL操作之后,依赖这个表的一些存储过程,触发器等会失效,可以用下边的脚本进行重编译 /* Formatted on 2020/7/8 上午 09:31:31 (QP5 v5.163.1008 ...

  6. oralce move和shrink释放高水位

    转自:https://blog.51cto.com/fengfeng688/1955137 move和shrink的共同点: 收缩段,消除部分行迁移,消除空间碎片,使数据更紧密 shrink用法: 语 ...

  7. D2Admin 登录用户重新初始话右侧菜单

    背景 最近用到D2Admin开发项目,用户登录菜单要根据用户角色权限获取,但是又不想用官网的方案(vue基于d2-admin的RBAC权限管理解决方案),所以自己加了个只修改 menuAside的方案 ...

  8. 天天用SpringBoot居然还不知道它的自动装配的原理?

    引言 最近有个读者在面试,面试中被问到了这样一个问题"看你项目中用到了springboot,你说下springboot的自动配置是怎么实现的?"这应该是一个springboot里面 ...

  9. 过压保护IC和带LDO模式的Li+充电器前端保护IC

    PW2601是一种充电器前端集成电路,旨在为锂离子提供保护电池充电电路故障.该设备监测输入电压,电池电压以及充电电流,以确保所有三个参数都在正常范围内工作.这个该设备将关闭内部MOSFET断开,以保护 ...

  10. USB充电限流IC,可调到4.8A,输入 6V关闭

    随着手机充电电流的提升,和设备的多样化,USB限流芯片就随着需求的增加而越来越多,同时为了更好的保护电子设备,需要进行一路或者多路的负载进行限流. 一般说明 PW1503,PW1502是超低RDS(O ...