hdu4126Genghis Khan the Conqueror (最小生成树+树形dp)
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 327680/327680 K (Java/Others)
Total Submission(s): 2524 Accepted Submission(s): 760
Khan founded a strong cavalry equipped by irony discipline, sabers and powder, and he became to the most fearsome conqueror in the history. He stretched the empire that resulted in the conquest of most of Eurasia. The following figure (origin: Wikipedia) shows
the territory of Mongol Empire at that time.

Our story is about Jebei Noyan(哲别), who was one of the most famous generals in Genghis Khan’s cavalry. Once his led the advance troop to invade a country named Pushtuar. The knights rolled up all the cities in Pushtuar rapidly. As Jebei Noyan’s advance troop
did not have enough soldiers, the conquest was temporary and vulnerable and he was waiting for the Genghis Khan’s reinforce. At the meantime, Jebei Noyan needed to set up many guarders on the road of the country in order to guarantee that his troop in each
city can send and receive messages safely and promptly through those roads.
There were N cities in Pushtuar and there were bidirectional roads connecting cities. If Jebei set up guarders on a road, it was totally safe to deliver messages between the two cities connected by the road. However setting up guarders on different road took
different cost based on the distance, road condition and the residual armed power nearby. Jebei had known the cost of setting up guarders on each road. He wanted to guarantee that each two cities can safely deliver messages either directly or indirectly and
the total cost was minimal.
Things will always get a little bit harder. As a sophisticated general, Jebei predicted that there would be one uprising happening in the country sooner or later which might increase the cost (setting up guarders) on exactly ONE road. Nevertheless he did not
know which road would be affected, but only got the information of some suspicious road cost changes. We assumed that the probability of each suspicious case was the same. Since that after the uprising happened, the plan of guarder setting should be rearranged
to achieve the minimal cost, Jebei Noyan wanted to know the new expected minimal total cost immediately based on current information.
For each test case, the first line contains two integers N and M (1<=N<=3000, 0<=M<=N×N), demonstrating the number of cities and roads in Pushtuar. Cities are numbered from 0 to N-1. In the each of the following M lines, there are three integers xi,
yi and ci(ci<=107), showing that there is a bidirectional road between xi and yi, while the cost of setting up guarders on this road is ci. We guarantee that the graph is connected.
The total cost of the graph is less or equal to 109.
The next line contains an integer Q (1<=Q<=10000) representing the number of suspicious road cost changes. In the following Q lines, each line contains three integers Xi, Yi and Ci showing that the cost of road (Xi,
Yi) may change to Ci (Ci<=107). We guarantee that the road always exists and Ci is larger than the original cost (we guarantee that there is at most one road connecting two cities directly). Please note
that the probability of each suspicious road cost change is the same.
0 1 3
0 2 2
1 2 5
3
0 2 3
1 2 6
0 1 6
0 0
The initial minimal cost is 5 by connecting city 0 to 1 and city 0 to 2. In the first suspicious case, the minimal total cost is increased to 6;
the second case remains 5; the third case is increased to 7. As the result, the expected cost is (5+6+7)/3 = 6.
#include <vector>
#include <stdio.h>
#include <iostream>
#include <algorithm>
using namespace std;
const int N=3000+5;
const int inf=1000000000;
struct edge{
int u,v,w;
}e[N*N];//所有的边
int n,m,q;
int a,b,c;
int father[N];
int map[N][N];//map[i][j]表示(i,j)边权值
int dp[N][N];//dp[i][j]表示去掉MST上的(i,j)边后的最佳替换边的长度
bool vis[N][N];//标记是否在MST上
vector<int> Edge[N];
int min(int a,int b){return a<b?a:b;}
int find(int x){
if(x!=father[x])
father[x]=find(father[x]);
return father[x];
}
//用于Kruskal使用
int cmp(edge e1,edge e2){
return e1.w<e2.w;
}
//更新dp[i][j],对于i点为根的除j之外的所有子树中的所有的点到j距离的最小值
//确定这些点和j不在一个集合里
int dfs(int rt,int u,int fa){//求rt点到以u为根的树及其子树的最小距离
int ans=inf;
for(int i=0;i<Edge[u].size();i++){
int v=Edge[u][i];
if(v==fa) continue;
int tmp=dfs(rt,v,u);
ans=min(ans,tmp);
dp[u][v]=dp[v][u]=min(dp[u][v],tmp);//注意,这里更新的是u,v
//通过dfs的返回值来更新dp[i][j]
}
if(rt!=fa) //保证这条边不是生成树的边,不然不能更新
ans=min(ans, map[rt][u]);
return ans;
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
if(n==0&&m==0) break;
double mst=0,sum=0;
for(int i=0;i<n;i++){
Edge[i].clear();
father[i]=i;
for(int j=0;j<n;j++)
map[i][j]=dp[i][j]=inf,
vis[i][j]=1;
}
for(int i=0;i<m;i++){
scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
map[e[i].u][e[i].v]=map[e[i].v][e[i].u]=e[i].w;
}
sort(e,e+m,cmp);
for(int i=0;i<m;i++){
a=find(e[i].u);
b=find(e[i].v);
if(a!=b){
father[a]=b;
mst+=e[i].w;
Edge[e[i].u].push_back(e[i].v),
Edge[e[i].v].push_back(e[i].u);
vis[e[i].u][e[i].v]=vis[e[i].v][e[i].u]=0;
}
}
for(int i=0;i<n;i++){
dfs(i,i,-1);
}
scanf("%d",&q);
for(int i=0;i<q;i++){
scanf("%d%d%d",&a,&b,&c);
if(vis[a][b]==1)
sum+=mst;
else
sum+=mst*1.0-map[a][b]+min(dp[a][b],c);
}
printf("%.4lf\n",sum/(double)q);
}
return 0;
}
hdu4126Genghis Khan the Conqueror (最小生成树+树形dp)的更多相关文章
- HDU 4126 Genghis Khan the Conqueror 最小生成树+树形dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4126 Genghis Khan the Conqueror Time Limit: 10000/50 ...
- HDU4126Genghis Khan the Conqueror(最小生成树+并查集)
Genghis Khan the Conqueror Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 327680/327680 K ...
- hdu4126Genghis Khan the ConquerorGenghis Khan the Conqueror(MST+树形DP)
题目请戳这里 题目大意:给n个点,m条边,每条边权值c,现在要使这n个点连通.现在已知某条边要发生突变,再给q个三元组,每个三元组(a,b,c),(a,b)表示图中可能发生突变的边,该边一定是图中的边 ...
- HDU 4126 Genghis Khan the Conqueror MST+树形dp
题意: 给定n个点m条边的无向图. 以下m行给出边和边权 以下Q个询问. Q行每行给出一条边(一定是m条边中的一条) 表示改动边权. (数据保证改动后的边权比原先的边权大) 问:改动后的最小生成树的权 ...
- hdu 4081 最小生成树+树形dp
思路:直接先求一下最小生成树,然后用树形dp来求最优值.也就是两遍dfs. #include<iostream> #include<algorithm> #include< ...
- UVA- 1504 - Genghis Khan the Conqueror(最小生成树-好题)
题意: n个点,m个边,然后给出m条边的顶点和权值,其次是q次替换,每次替换一条边,给出每次替换的边的顶点和权值,然后求出这次替换的最小生成树的值; 最后要你输出:q次替换的平均值.其中n<30 ...
- Install Air Conditioning HDU - 4756(最小生成树+树形dp)
Install Air Conditioning HDU - 4756 题意是要让n-1间宿舍和发电站相连 也就是连通嘛 最小生成树板子一套 但是还有个限制条件 就是其中有两个宿舍是不能连着的 要求所 ...
- HDU 5723 Abandoned country(最小生成树 + 树形DP)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5723 [题目大意] n座城市,m条路径,求解: 1.最短的路径和,使得n座城市之间直接或者间接连通 ...
- Abandoned country(最小生成树+树形DP)
#include<bits/stdc++.h> using namespace std; struct node{ int u, v, w, nex; bool gone; node(){ ...
随机推荐
- Java实现RS485串口通信
前言 前段时间赶项目的过程中,遇到一个调用RS485串口通信的需求,赶完项目因为楼主处理私事,没来得及完成文章的更新,现在终于可以整理一下当时的demo,记录下来. 首先说一下大概需求:这个项目是机器 ...
- 科来网络通讯协议图2019版(OSI七层模型)
来源:http://www.colasoft.com.cn/download/protocols_map.php 自己把它转成了图片,好做查看:https://www.lanzous.com/ib5h ...
- Unity优化图解
花了2天把之前学到的一些关于优化的知识全都写了下来,放到一张表里面 https://www.processon.com/mindmap/5cf64f53e4b0bc8329e8112e
- 数据库MySQL(带你零基础入门MySQL)
(一)认识数据库 redis默认端口:6379 mysql默认端口:3306 什么是数据库? 数据库的英文单词:data base,简称DB. 数据库实际上就是一个文件集合,是一个存储数据的仓库,本质 ...
- 【Linux】同时插入多行数据到文本文件中
如果想同时插入多行数据到指定的文本中,可以用下面的命令EOF cat >> test.txt <<EOF 1234 5678 GOOD EOF 将上述3行插入到 test.tx ...
- Git 沙盒模拟实战(远程篇)
Git 沙盒模拟实战(远程篇) >---基础篇 远程仓库 远程仓库并不复杂, 在如今的云计算盛行的世界很容易把远程仓库想象成一个富有魔力的东西, 但实际上它们只是你的仓库在另个一台计算机上的拷贝 ...
- [Cerc2005]Knights of the Round Table
题目描述 有n个骑士经常举行圆桌会议,商讨大事.每次圆桌会议至少有3个骑士参加,且相互憎恨的骑士不能坐在圆桌的相邻位置.如果发生意见分歧,则需要举手表决,因此参加会议的骑士数目必须是大于1的奇数,以防 ...
- Spring入门及IoC的概念
Spring入门 Spring是一个轻量级的Java开发框架,最早由Robd Johnson创建,目的为了解决企业级应用开发的业务逻辑层和其他各层的耦合问题,它是一个分层的JavaSE/EE轻量级开源 ...
- java进阶(33)--IO流
一.IO流概念:1.基本概念2.IO流分类3.java.io流的四大家族4.流的close和flush方法5.java.id下常用的16个流 二.FileInputStream字节输入流1.FileI ...
- 03. struts2中Action配置的各项默认值
Action中的各项默认值 Action各项配置 <action name="helloworld" class="com.liuyong666.action.He ...