hdu4126Genghis Khan the Conqueror (最小生成树+树形dp)
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 327680/327680 K (Java/Others)
Total Submission(s): 2524 Accepted Submission(s): 760
Khan founded a strong cavalry equipped by irony discipline, sabers and powder, and he became to the most fearsome conqueror in the history. He stretched the empire that resulted in the conquest of most of Eurasia. The following figure (origin: Wikipedia) shows
the territory of Mongol Empire at that time.

Our story is about Jebei Noyan(哲别), who was one of the most famous generals in Genghis Khan’s cavalry. Once his led the advance troop to invade a country named Pushtuar. The knights rolled up all the cities in Pushtuar rapidly. As Jebei Noyan’s advance troop
did not have enough soldiers, the conquest was temporary and vulnerable and he was waiting for the Genghis Khan’s reinforce. At the meantime, Jebei Noyan needed to set up many guarders on the road of the country in order to guarantee that his troop in each
city can send and receive messages safely and promptly through those roads.
There were N cities in Pushtuar and there were bidirectional roads connecting cities. If Jebei set up guarders on a road, it was totally safe to deliver messages between the two cities connected by the road. However setting up guarders on different road took
different cost based on the distance, road condition and the residual armed power nearby. Jebei had known the cost of setting up guarders on each road. He wanted to guarantee that each two cities can safely deliver messages either directly or indirectly and
the total cost was minimal.
Things will always get a little bit harder. As a sophisticated general, Jebei predicted that there would be one uprising happening in the country sooner or later which might increase the cost (setting up guarders) on exactly ONE road. Nevertheless he did not
know which road would be affected, but only got the information of some suspicious road cost changes. We assumed that the probability of each suspicious case was the same. Since that after the uprising happened, the plan of guarder setting should be rearranged
to achieve the minimal cost, Jebei Noyan wanted to know the new expected minimal total cost immediately based on current information.
For each test case, the first line contains two integers N and M (1<=N<=3000, 0<=M<=N×N), demonstrating the number of cities and roads in Pushtuar. Cities are numbered from 0 to N-1. In the each of the following M lines, there are three integers xi,
yi and ci(ci<=107), showing that there is a bidirectional road between xi and yi, while the cost of setting up guarders on this road is ci. We guarantee that the graph is connected.
The total cost of the graph is less or equal to 109.
The next line contains an integer Q (1<=Q<=10000) representing the number of suspicious road cost changes. In the following Q lines, each line contains three integers Xi, Yi and Ci showing that the cost of road (Xi,
Yi) may change to Ci (Ci<=107). We guarantee that the road always exists and Ci is larger than the original cost (we guarantee that there is at most one road connecting two cities directly). Please note
that the probability of each suspicious road cost change is the same.
0 1 3
0 2 2
1 2 5
3
0 2 3
1 2 6
0 1 6
0 0
The initial minimal cost is 5 by connecting city 0 to 1 and city 0 to 2. In the first suspicious case, the minimal total cost is increased to 6;
the second case remains 5; the third case is increased to 7. As the result, the expected cost is (5+6+7)/3 = 6.
#include <vector>
#include <stdio.h>
#include <iostream>
#include <algorithm>
using namespace std;
const int N=3000+5;
const int inf=1000000000;
struct edge{
int u,v,w;
}e[N*N];//所有的边
int n,m,q;
int a,b,c;
int father[N];
int map[N][N];//map[i][j]表示(i,j)边权值
int dp[N][N];//dp[i][j]表示去掉MST上的(i,j)边后的最佳替换边的长度
bool vis[N][N];//标记是否在MST上
vector<int> Edge[N];
int min(int a,int b){return a<b?a:b;}
int find(int x){
if(x!=father[x])
father[x]=find(father[x]);
return father[x];
}
//用于Kruskal使用
int cmp(edge e1,edge e2){
return e1.w<e2.w;
}
//更新dp[i][j],对于i点为根的除j之外的所有子树中的所有的点到j距离的最小值
//确定这些点和j不在一个集合里
int dfs(int rt,int u,int fa){//求rt点到以u为根的树及其子树的最小距离
int ans=inf;
for(int i=0;i<Edge[u].size();i++){
int v=Edge[u][i];
if(v==fa) continue;
int tmp=dfs(rt,v,u);
ans=min(ans,tmp);
dp[u][v]=dp[v][u]=min(dp[u][v],tmp);//注意,这里更新的是u,v
//通过dfs的返回值来更新dp[i][j]
}
if(rt!=fa) //保证这条边不是生成树的边,不然不能更新
ans=min(ans, map[rt][u]);
return ans;
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
if(n==0&&m==0) break;
double mst=0,sum=0;
for(int i=0;i<n;i++){
Edge[i].clear();
father[i]=i;
for(int j=0;j<n;j++)
map[i][j]=dp[i][j]=inf,
vis[i][j]=1;
}
for(int i=0;i<m;i++){
scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
map[e[i].u][e[i].v]=map[e[i].v][e[i].u]=e[i].w;
}
sort(e,e+m,cmp);
for(int i=0;i<m;i++){
a=find(e[i].u);
b=find(e[i].v);
if(a!=b){
father[a]=b;
mst+=e[i].w;
Edge[e[i].u].push_back(e[i].v),
Edge[e[i].v].push_back(e[i].u);
vis[e[i].u][e[i].v]=vis[e[i].v][e[i].u]=0;
}
}
for(int i=0;i<n;i++){
dfs(i,i,-1);
}
scanf("%d",&q);
for(int i=0;i<q;i++){
scanf("%d%d%d",&a,&b,&c);
if(vis[a][b]==1)
sum+=mst;
else
sum+=mst*1.0-map[a][b]+min(dp[a][b],c);
}
printf("%.4lf\n",sum/(double)q);
}
return 0;
}
hdu4126Genghis Khan the Conqueror (最小生成树+树形dp)的更多相关文章
- HDU 4126 Genghis Khan the Conqueror 最小生成树+树形dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4126 Genghis Khan the Conqueror Time Limit: 10000/50 ...
- HDU4126Genghis Khan the Conqueror(最小生成树+并查集)
Genghis Khan the Conqueror Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 327680/327680 K ...
- hdu4126Genghis Khan the ConquerorGenghis Khan the Conqueror(MST+树形DP)
题目请戳这里 题目大意:给n个点,m条边,每条边权值c,现在要使这n个点连通.现在已知某条边要发生突变,再给q个三元组,每个三元组(a,b,c),(a,b)表示图中可能发生突变的边,该边一定是图中的边 ...
- HDU 4126 Genghis Khan the Conqueror MST+树形dp
题意: 给定n个点m条边的无向图. 以下m行给出边和边权 以下Q个询问. Q行每行给出一条边(一定是m条边中的一条) 表示改动边权. (数据保证改动后的边权比原先的边权大) 问:改动后的最小生成树的权 ...
- hdu 4081 最小生成树+树形dp
思路:直接先求一下最小生成树,然后用树形dp来求最优值.也就是两遍dfs. #include<iostream> #include<algorithm> #include< ...
- UVA- 1504 - Genghis Khan the Conqueror(最小生成树-好题)
题意: n个点,m个边,然后给出m条边的顶点和权值,其次是q次替换,每次替换一条边,给出每次替换的边的顶点和权值,然后求出这次替换的最小生成树的值; 最后要你输出:q次替换的平均值.其中n<30 ...
- Install Air Conditioning HDU - 4756(最小生成树+树形dp)
Install Air Conditioning HDU - 4756 题意是要让n-1间宿舍和发电站相连 也就是连通嘛 最小生成树板子一套 但是还有个限制条件 就是其中有两个宿舍是不能连着的 要求所 ...
- HDU 5723 Abandoned country(最小生成树 + 树形DP)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5723 [题目大意] n座城市,m条路径,求解: 1.最短的路径和,使得n座城市之间直接或者间接连通 ...
- Abandoned country(最小生成树+树形DP)
#include<bits/stdc++.h> using namespace std; struct node{ int u, v, w, nex; bool gone; node(){ ...
随机推荐
- 如何使用 VS Code开发.NET Core应用程序
Visual Studio Code(VS Code)是Microsoft为Windows,Linux和Mac操作系统开发的免费,跨平台,轻量级的源代码编辑器,它是源代码编辑器,而Visual Stu ...
- Jenkins+GitLab+SonnarQube搭建CI/CD全流程
1. CI/CD 1.1 CI - 持续集成 持续集成( Continuous integration , 简称 CI )指的是,频繁地(一天多次)将代码集成到主干.持续集成的目的就是让产品可以快速迭 ...
- zabbix_server上的问题
不要写成127.0.0.1,要不然一直包zabbix agent没有启动.
- zabbix 监控的数据
/usr/local/zabbix/bin/zabbix_sender --zabbix-server 192.168.1.10 --port 10051 --input-file /var/log/ ...
- 【Oracle】instr()函数详解
1)instr()函数的格式 (俗称:字符查找函数) 格式一:instr( string1, string2 ) / instr(源字符串, 目标字符串) 格式二:instr( strin ...
- poj-Decoding Morse Sequences(动态规划)
Description Before the digital age, the most common "binary" code for radio communication ...
- 深入理解Redis之简单动态字符串
目录 SDS SDS与C字符串的区别 SDS获取字符串长度复杂度为O(1),C字符串为O(N) SDS杜绝了缓存区溢出 减少修改字符串时带来的内存重分配次数 二进制安全 Redis没有直接使用C语言传 ...
- ctfhub技能树—sql注入—过滤空格
手注 查询数据库 -1/**/union/**/select/**/database(),2 查询表名 -1/**/union/**/select/**/group_concat(table_name ...
- UNDO表空间切换步骤
1.新建UNDO表空间 create undo tablespace UNDOTBS2 datafile '/data01/testdb/undotbs01.dbf' size 1G; alter d ...
- java 文件上传的那些事
文件上传 逻辑 @Value("${sava_path}") private String sava_path; @Override public String saveFile( ...