Problem Description
A wqb-number, or B-number for short, is a non-negative integer whose decimal form contains the sub- string "13" and can be divided by 13. For example, 130 and 2613 are wqb-numbers, but 143 and 2639 are not. Your task is to calculate how many wqb-numbers from
1 to n for a given integer n.
 

Input
Process till EOF. In each line, there is one positive integer n(1 <= n <= 1000000000).
 

Output
Print each answer in a single line.
 

Sample Input

13
100
200
1000
 

Sample Output

1
1
2
2
 

Author
wqb0039
 

题意:给你一个数n,让你求1~n中有多少数x符合x%13==0 且x中出现过“13”这个子串。

思路:用dfs(pre,pos,num,flag,limit)来数出所有符合条件的数,其中pre表示这一位的上一位是什么,pos表示当前正循环到哪个位置,num表示到这一位时的总和(%13后,且这一位还没有算),flag表示之前的字符串中是否已经出现过"13"这个字符串,limit表示当前这位是有限制还是没有限制的,有限制的话,这一位最高遍历到wei[pos],没有限制的话最高遍历到9.另外没有剪枝的话会超时,所以用dp[pre][pos][num][flag]表示在limit==0的情况下,后面可以加上的值,如果(pre,pos,flag)这个状态已经遍历过的话,就不用遍历一遍了。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 805
int wei[15];
int dp[11][40][15][2];//到i位置%13为j且是否含有13的flag值为k的方案数 int dfs(int pre,int pos,int num,int flag,int limit){
int i,j;
if(pos==0){
if((num%13==0) && (flag==1))return 1;
return 0;
}
if((limit==0) && (dp[pre][pos][num][flag]!=-1) ){
return dp[pre][pos][num][flag];
} int sum=0;
int num1,flag1; if(limit==0){
for(j=0;j<=9;j++){
num1=(num*10+j)%13;
flag1=flag;
if((pre==1) && (j==3) ){
flag1=1;
}
sum+=dfs(j,pos-1,num1,flag1,0);
}
}
else if(limit==1){
for(j=0;j<=wei[pos];j++){
num1=(num*10+j)%13;
flag1=flag;
if((pre==1) && (j==3) ){
flag1=1;
}
if(j<wei[pos])sum+=dfs(j,pos-1,num1,flag1,0);
else sum+=dfs(j,pos-1,num1,flag1,1);
}
} if(limit==0){
dp[pre][pos][num][flag]=sum;
}
return sum;
}
int solve(int x)
{
int i,j,len=0,t=x;
while(t){
wei[++len]=t%10;
t/=10;
}
wei[len+1]=0;
memset(dp,-1,sizeof(dp));
int sum;
sum=dfs(0,len,0,0,1);
return sum;
} int main()
{
int n,m,i,j;
while(scanf("%d",&n)!=EOF)
{
printf("%d\n",solve(n));
}
}

hdu3652B-number (数位dp)的更多相关文章

  1. 多校5 HDU5787 K-wolf Number 数位DP

    // 多校5 HDU5787 K-wolf Number 数位DP // dp[pos][a][b][c][d][f] 当前在pos,前四个数分别是a b c d // f 用作标记,当现在枚举的数小 ...

  2. hdu 5898 odd-even number 数位DP

    传送门:hdu 5898 odd-even number 思路:数位DP,套着数位DP的模板搞一发就可以了不过要注意前导0的处理,dp[pos][pre][status][ze] pos:当前处理的位 ...

  3. codeforces Hill Number 数位dp

    http://www.codeforces.com/gym/100827/attachments Hill Number Time Limits:  5000 MS   Memory Limits: ...

  4. HDU 5787 K-wolf Number 数位DP

    K-wolf Number Problem Description   Alice thinks an integer x is a K-wolf number, if every K adjacen ...

  5. Fzu2109 Mountain Number 数位dp

    Accept: 189    Submit: 461Time Limit: 1000 mSec    Memory Limit : 32768 KB  Problem Description One ...

  6. HDU 3709 Balanced Number (数位DP)

    Balanced Number Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) ...

  7. beautiful number 数位DP codeforces 55D

    题目链接: http://codeforces.com/problemset/problem/55/D 数位DP 题目描述: 一个数能被它每位上的数字整除(0除外),那么它就是beautiful nu ...

  8. FZU - 2109 Mountain Number 数位dp

    Mountain Number One integer number x is called "Mountain Number" if: (1) x>0 and x is a ...

  9. BNU 13024 . Fi Binary Number 数位dp/fibonacci数列

    B. Fi Binary Number     A Fi-binary number is a number that contains only 0 and 1. It does not conta ...

  10. hdu 5898 odd-even number(数位dp)

    Problem Description For a number,if the length of continuous odd digits is even and the length of co ...

随机推荐

  1. Flutter 布局类组件:简介

    前言 布局类组件都会包含一个或多个子组件,不同的布局类组件对子组件排版(layout)方式不同. 我们知道,Element树才是最终的绘制树,Element树是通过Widget树来创建的(通过Widg ...

  2. ansible 安装和使用

                                ansible 安装和使用   ## 安装epel 源: rpm -ivh https://dl.fedoraproject.org/pub/e ...

  3. 跨站脚本漏洞(XSS)基础

    什么是跨站脚本攻击XSS 跨站脚本(cross site script),为了避免与样式css混淆所以简称为XSS,是一种经常出现在web应用中的计算机安全漏洞,也是web中最主流的攻击方式. 什么是 ...

  4. 【Linux】reverse mapping checking getaddrinfo for XXX.XXXX.com failed - POSSIBLE BREAKIN ATTEMPT!

    ------------------------------------------------------------------------------------------------- | ...

  5. Flask的“中间件”

    特殊装饰器 from flask import Flask,render_template,request app = Flask(__name__) @app.before_request def ...

  6. uni-app开发经验分享十二: Android平台应用启动时读写手机存储、访问设备信息(如IMEI)等权限策略及提示信息

    Android平台从6.0(API23)开始系统对权限的管理更加严格,所有涉及敏感权限都需要用户授权允许才能获取.因此一些应用基础业务逻辑需要的权限会在应用启动时申请,并引导用户允许. 读写手机存储权 ...

  7. 如何将python中pip源设置为国内源

    1.Windows Python的学习过程中,往往会学习到很多库,而安装各类库的时候,往往不尽人意,下载速度从几KB到十几KB.甚至下载到一半还超时报错.这都是因为pip源是访问国外的官方源,如果需要 ...

  8. moco框架加入cookies

    一.带cookie信息的get请求 注意:cookie是放在request里的,一般登录的场景这些会用到 1.代码 2.接口管理工具添加 注意:cooike的域和路径都要添加 二.带cookie信息的 ...

  9. I/O 复用 multiplexing data race 同步 coroutine 协程

    小结: 1.A file descriptor is considered ready if it is possible to perform the corresponding I/O opera ...

  10. windows命令行关闭IE代理

    打开:reg add "HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings" /v ProxyEnab ...