Consider the decimal presentation of an integer. Let's call a number d-magic if digit d appears
in decimal presentation of the number on even positions and nowhere else.

For example, the numbers 1727374, 17, 1 are 7-magic but 77, 7, 123, 34, 71 are
not 7-magic. On the other hand the number 7 is 0-magic, 123 is 2-magic, 34 is 4-magic and 71 is 1-magic.

Find the number of d-magic numbers in the segment [a, b] that
are multiple of m. Because the answer can be very huge you should only find its value modulo 109 + 7 (so
you should find the remainder after dividing by 109 + 7).

Input

The first line contains two integers m, d (1 ≤ m ≤ 2000, 0 ≤ d ≤ 9)
— the parameters from the problem statement.

The second line contains positive integer a in decimal presentation (without leading zeroes).

The third line contains positive integer b in decimal presentation (without leading zeroes).

It is guaranteed that a ≤ b, the number of digits in a and b are
the same and don't exceed 2000.

Output

Print the only integer a — the remainder after dividing by 109 + 7 of
the number of d-magic numbers in segment [a, b] that
are multiple of m.

Examples
input
2 6
10
99
output
8
input
2 0
1
9
output
4
input
19 7
1000
9999
output
6
Note

The numbers from the answer of the first example are 16, 26, 36, 46, 56, 76, 86 and 96.

The numbers from the answer of the second example are 2, 4, 6 and 8.

The numbers from the answer of the third example are 1767, 2717, 5757, 6707, 8797 and 9747.

题意:给你一个区间[a,b],让你找到这个区间内满足没有前导零且偶数位都是d,奇数位不出现d,并且这个数能被m整除的数的个数。

思路:用dp[pos][yushu][oushu]表示pos位前面的位形成的数modm后余数为yushu,且当前位是否是偶数的方案数,要注意前导零。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define MOD 1000000007
char s1[2005],s2[2005];
int wei[2005];
ll dp[2005][2005][2];
int m,d;
void add(ll& x,ll y) {
x += y;
if(x>=MOD) x-=MOD;
} ll dfs(int pos,int yushu,int oushu,int flag,int zero)
{
int i,j;
if(pos==-1){
if(zero==1)return 0;
if(yushu==0)return 1;
else return 0;
}
if(!flag && !zero && dp[pos][yushu][oushu]!=-1){
return dp[pos][yushu][oushu];
} int ed=flag?wei[pos]:9;
ll ans=0;
if(zero==1){
add(ans,dfs(pos-1,yushu,oushu,0,1));
for(i=1;i<=ed;i++){
if(i!=d)add(ans,dfs(pos-1,(yushu*10+i)%m,1^oushu,flag&&wei[pos]==i,0) );
}
}
else{
if(oushu){
if(d<=ed)add(ans,dfs(pos-1,(yushu*10+d)%m,1^oushu,flag&&wei[pos]==d,0) );
}
else{
for(i=0;i<=ed;i++){
if(i!=d)add(ans,dfs(pos-1,(yushu*10+i)%m,1^oushu,flag&&wei[pos]==i,0) );
}
}
}
if(!flag && !zero){
dp[pos][yushu][oushu]=ans;
}
return ans;
} ll solve(char s[])
{
int len,i,j;
len=strlen(s);
for(i=len-1;i>=0;i--){
wei[i]=s[i]-'0';
}
return dfs(len-1,0,0,1,1);
} int main()
{
int n,i,j,len1,len2;
while(scanf("%d%d",&m,&d)!=EOF)
{
scanf("%s%s",s1,s2);
len1=strlen(s1);
reverse(s1,s1+len1);
for(i=0;i<len1;i++){
if(s1[i]=='0'){
s1[i]='9';
}
else{
s1[i]--;break;
}
}
if(s1[len1-1]=='0'){
s1[len1-1]='\0';
len1--;
} len2=strlen(s2);
reverse(s2,s2+len2);
memset(dp,-1,sizeof(dp));
ll num1=solve(s1);
ll num2=solve(s2);
printf("%I64d\n",((num2-num1)%MOD+MOD)%MOD ); }
return 0;
}

codeforces628D. Magic Numbers (数位dp)的更多相关文章

  1. Educational Codeforces Round 8 D. Magic Numbers 数位DP

    D. Magic Numbers 题目连接: http://www.codeforces.com/contest/628/problem/D Description Consider the deci ...

  2. CodeForces 628 D Magic Numbers 数位DP

    Magic Numbers 题意: 题意比较难读:首先对于一个串来说, 如果他是d-串, 那么他的第偶数个字符都是是d,第奇数个字符都不是d. 然后求[L, R]里面的多少个数是d-串,且是m的倍数. ...

  3. 【CF628D】Magic Numbers 数位DP

    [CF628D]Magic Numbers 题意:求[a,b]中,偶数位的数字都是d,其余为数字都不是d,且能被m整除的数的个数(这里的偶数位是的是从高位往低位数的偶数位).$a,b<10^{2 ...

  4. CodeForces 628D Magic Numbers (数位dp)

    题意:找到[a, b]符合下列要求的数的个数. 1.该数字能被m整除 2.该数字奇数位全不为d,偶数位全为d 分析: 1.dp[当前的位数][截止到当前位所形成的数对m取余的结果][当前数位上的数字是 ...

  5. 2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 J Beautiful Numbers (数位DP)

    2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 J Beautiful Numbers (数位DP) 链接:https://ac.nowcoder.com/acm/contest/163/ ...

  6. codeforces 55D - Beautiful numbers(数位DP+离散化)

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  7. Codeforces Beta Round #51 D. Beautiful numbers 数位dp

    D. Beautiful numbers Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/55/p ...

  8. poj 3252 Round Numbers(数位dp 处理前导零)

    Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...

  9. uva 10712 - Count the Numbers(数位dp)

    题目链接:uva 10712 - Count the Numbers 题目大意:给出n,a.b.问说在a到b之间有多少个n. 解题思路:数位dp.dp[i][j][x][y]表示第i位为j的时候.x是 ...

随机推荐

  1. SpringBoot 集成Shiro之使用Redis缓存授权认证信息

    因为用户认证与授权需要从数据库中查询并验证信息,但是对于权限很少改变的情况,这样不断从数据库中查询角色验证权限,对整个系统的开销很大,对数据库压力也随之增大.因此可以将用户认证和授权信息都缓存起来,第 ...

  2. 【Linux】Centos7 安装redis最新稳定版及问题解决

    ------------------------------------------------------------------------------------------------- | ...

  3. 【Python】在CentOS6.8中安装pip9.0.1和setuptools33.1

    wget https://bootstrap.pypa.io/ez_setup.py python ez_setup.py install --如果这个文件安装需要下载的文件无法下载的话,手动下载,放 ...

  4. 把vscode打造成技术写作神器

    作为技术开发,大家平时肯定需要记录技术笔记.甚至有的同学还开通可自己的技术博客或者技术公众号进行创作. 这个时候有套趁手的写作工具尤为重要,节省下时间好好休息一下,对于咱们程序员来说更加重要.因为最近 ...

  5. luogu P1453 城市环路

    题目描述 整个城市可以看做一个N个点,N条边的单圈图(保证图连通),唯一的环便是绕城的环路.保证环上任意两点有且只有2条路径互通.图中的其它部分皆隶属城市郊区. 现在,有一位名叫Jim的同学想在B市开 ...

  6. TCP三次握手Linux源码解析

    TCP是面向连接的协议.面向连接的传输层协议在原点和重点之间建立了一条虚拟路径,同属于一个报文的所有报文段都沿着这条虚拟路径发送,为整个报文使用一条虚拟路径能够更容易地实施确认过程以及对损伤或者丢失报 ...

  7. uni-app开发经验分享三: Vuex实现登录和用户信息留存

    在做用户登录的过程中,其实最重要的是登录成功后的数据要怎么储存,储存到哪里,这里我分享一个利用vuex来实现用户登录和用户数据留存的方法 vuex代码如下: //引入vue和vuex import V ...

  8. 2、fork函数与进程ID

    1. fork函数 fork函数用于克隆一份当前的进程资源,调用fork函数之后,进程一分为二,并且两个进程的资源是一样的(只是资源内容完全一样,并不是同一份资源).fork函数的函数原型为:pid_ ...

  9. Python+Selenium+Unittest实现PO模式web自动化框架(6)

    1.TestCases目录下的模块 TestCases目录下是存放测试用例的目录. TestCases目录下的测试用例采用unittest框架来构建. 例如:登录功能的测试用例.(test_1_log ...

  10. error Unexpected use of comma operator no-sequences解决过程

    error Unexpected use of comma operator no-sequences解决过程 报错内容: ERROR in ./pages/course/_id.vue friend ...