5.15 牛客挑战赛40 C 小V和字符串 数位dp 计数问题
LINK:小V和字符串
容易想到只有1个数相同的 才能有贡献。
知道两个01串 那么容易得到最小步数 大体上就是 第一个串的最前的1和第二个串最前的1进行匹配。
容易想到设f[i][j]表示 前i位1的个数为j的贡献.
不过在 j-1 向 j进行转移的时候 两个集合的贡献无法得到 因为我们只知道其中一个串的最后一个1的位置。
考虑如果每次合并集合时 只统计最后一个1的贡献 那么这样无论怎么做都是错误的。
回到先前 还是考虑描绘出两个串长什么样子 然后 考虑如何统计答案。
问题变成了 逐位考虑 统计两个串的贡献。
那么先前那个匹配的工程就变成了对于每个前缀 1的数量是否相等 不相等 其中一个串的1要整体向右移动 不断进行这样的匹配即可。
这样我们就可以逐位得到贡献 累计上方案数就可以得到答案了。
值得一提的是 要记录其1的差值 下标为负可以进行调整。
由于两个串的贡献都会被统计两次 所以要除以2.
const int MAXN=1010,INV=(1+mod)>>1;
int n,m,maxx;
char a[MAXN];
int f[MAXN][MAXN][2][2];//方案数
int g[MAXN][MAXN][2][2];//答案
inline int add(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline int mus(int x,int y){return x-y<0?x-y+mod:x-y;}
inline int mul(int x,int y){return (ll)x*y%mod;}
int main()
{
freopen("1.in","r",stdin);
gc(a);n=strlen(a+1);
f[0][502][1][1]=1;m=n>>1;
rep(1,n,i)
{
rep(max(-i,-m),min(i,m),j)
{
int cc=j+502;
rep(0,1,l)
rep(0,1,r)
{
int w1=l==1?a[i]-'0':1;
int w2=r==1?a[i]-'0':1;
//两者都为0
f[i][cc][l==1&&w1==0][r==1&&w2==0]=add(f[i][cc][l==1&&w1==0][r==1&&w2==0],f[i-1][cc][l][r]);
g[i][cc][l==1&&w1==0][r==1&&w2==0]=add(g[i][cc][l==1&&w1==0][r==1&&w2==0],add(g[i-1][cc][l][r],mul(f[i-1][cc][l][r],abs(j))));
//两者都为1
if(w1&&w2)
{
f[i][cc][l==1&&w1==1][r==1&&w2==1]=add(f[i][cc][l==1&&w1==1][r==1&&w2==1],f[i-1][cc][l][r]);
g[i][cc][l==1&&w1==1][r==1&&w2==1]=add(g[i][cc][l==1&&w1==1][r==1&&w2==1],add(g[i-1][cc][l][r],mul(f[i-1][cc][l][r],abs(j))));
}
//第一个串为1.
if(w1)
{
f[i][cc+1][l==1&&w1==1][r==1&&w2==0]=add(f[i][cc+1][l==1&&w1==1][r==1&&w2==0],f[i-1][cc][l][r]);
g[i][cc+1][l==1&&w1==1][r==1&&w2==0]=add(g[i][cc+1][l==1&&w1==1][r==1&&w2==0],add(g[i-1][cc][l][r],mul(f[i-1][cc][l][r],abs(j+1))));
}
if(w2)
{
f[i][cc-1][l==1&&w1==0][r==1&&w2==1]=add(f[i][cc-1][l==1&&w1==0][r==1&&w2==1],f[i-1][cc][l][r]);
g[i][cc-1][l==1&&w1==0][r==1&&w2==1]=add(g[i][cc-1][l==1&&w1==0][r==1&&w2==1],add(g[i-1][cc][l][r],mul(f[i-1][cc][l][r],abs(j-1))));
}
}
}
}
put(mul(INV,add(add(g[n][502][0][0],g[n][502][0][1]),add(g[n][502][1][0],g[n][502][1][1]))));
return 0;
}
5.15 牛客挑战赛40 C 小V和字符串 数位dp 计数问题的更多相关文章
- 5.15 牛客挑战赛40 E 小V和gcd树 树链剖分 主席树 树状数组 根号分治
LINK:小V和gcd树 时限是8s 所以当时好多nq的暴力都能跑过. 考虑每次询问暴力 跳父亲 这样是nq的 4e8左右 随便过. 不过每次跳到某个点的时候需要得到边权 如果直接暴力gcd的话 nq ...
- 5.15 牛客挑战赛40 B 小V的序列 关于随机均摊分析 二进制
LINK:小V的序列 考试的时候 没想到正解 于是自闭. 题意很简单 就是 给出一个序列a 每次询问一个x 问序列中是否存在y 使得x^y的二进制位位1的个数<=3. 容易想到 暴力枚举. 第一 ...
- 牛客练习赛40 A 小D的剧场 (思维dp)
链接:https://ac.nowcoder.com/acm/contest/369/A 题目描述 若你摘得小的星星 你将得到小的幸福 若你摘得大的星星 你将得到大的财富 若两者都能摘得 你将得到 ...
- 牛客练习赛40 C 小A与欧拉路(树的直径)
链接:https://ac.nowcoder.com/acm/contest/369/C 题目描述 小A给你了一棵树,对于这棵树上的每一条边,你都可以将它复制任意(可以为0)次(即在这条边连接的两个点 ...
- 牛客挑战赛 30 A 小G数数
题目链接:https://ac.nowcoder.com/acm/contest/375/A 分析:我写的时候竟然把它当成了DP....... 还建了个结构体DP数组,保存一二位,不知道当时脑子在抽啥 ...
- 牛客挑战赛40 VMware和基站 set 二分 启发式合并 区间覆盖
LINK:VMware和基站 一道 做法并不常见的题目 看起来很难写 其实set维护线段就可以解决了. 容易想到 第二个操作借用启发式合并可以得到一个很不错的复杂度 不过利用线段树维护这个东西 在区间 ...
- 【牛客挑战赛30D】小A的昆特牌(组合问题抽象到二维平面)
点此看题面 大致题意: 有\(S\)张无编号的牌,可以将任意张牌锻造成\(n\)种步兵或\(m\)种弩兵中的一种,求最后步兵数量大于等于\(l\)小于等于\(r\)的方案数. 暴力式子 首先我们来考虑 ...
- 2019牛客多校第七场H Pair 数位DP
题意:给你一个3个数A, B, C问有多少对pair(i, j),1 <= i <= A, 1 <= j <= B, i AND j > C或 i XOR j < ...
- 牛客多校第七场H Pair 数位dp理解
Pair 题意 给出A B C,问x取值[1,A]和y取值[1,B]存在多少组pair<x,y>满足以下最小一种条件,\(x \& y >c\),\(x\) xor \(y& ...
随机推荐
- CSS中link和@import的使用区别
我们都知道在html中引入外部的CSS 有2种方式,link标签和@import,他们又什么区别呢? 1.从属关系区别@import是 CSS 提供的语法规则,只有导入样式表的作用:link是HTML ...
- C++中cin>>a原理
int a; vector<int>res; while(cin>>a){ res.push_back(a); } 给出这段代码 可以输入1 2 3 4 5并以回车结束,从而 ...
- videojs兼容ie8
从网上找到很多这个videojs兼容ie8的解决方案,一个一个的试,最后发现没有一个是靠谱的.我好无奈啊…… 先看图(ie上访问必须是线上地址) 看代码: <!DOCTYPE html> ...
- 【DevCloud · 敏捷智库】两种你必须了解的常见敏捷估算方法
背景 在某开发团队辅导的回顾会议上,团队成员对于优化估计具体方法上达成了一致意见.询问是否有什么具体的估计方法来做估算. 问题分析 回顾意见上大家对本次Sprint的效果做回顾,其中80%的成员对于本 ...
- windows dos 批量重命名文件
描述 在工作中经常出现 在同一目录下有一些 很多相同扩展名的文件但是名字看起来很乱各不同,我们想将它们统一重命名一下统一的格式,如果一个个去改名字太麻烦了. 这里我门就可以使用windows下 dos ...
- Scala 基础(六):Scala变量 (三) 标识符
1 标识符概念 1) Scala 对各种变量.方法.函数等命名时使用的字符序列称为标识符 2) 凡是自己可以起名字的地方都叫标识符 2 标识符的命名规则 Scala中的标识符声明,基本和Java是一致 ...
- JVM 专题八:运行时数据区(三)虚拟机栈
2.虚拟机栈 1. 概述 1.1 虚拟机栈出现背景 由于跨平台性的设计,java的指令都是根据栈来设计的.不同平台CPU架构不同,所以不能设计为基于寄存器的. 优点是跨平台,指令集小,编译器容易实现, ...
- 【C#】WebService接受跨域请求及返回json数据
问题概述 通过Web Service发布服务供客户端调用是一种非常简单.方便.快速的手段,并且服务发布后会有一个服务说明页面,直观明了,如图: 一般情况下,在web页面中的JavaScript中调用W ...
- Reface.AppStarter 类型扫描 —— 获得系统中所有的实体类型
类型扫描 是 Reface.AppStarter 提供的最基本.最核心的功能. AutoConfig , ComponentScan 等功能都是基于该功能完成的. 每一个使用 Reface.AppSt ...
- vpp之clib.h分析
vpp代码中有一个clib.h,其中封装了很一些很经典的位运算: //计算以2为底的对数,log2(x) //也就是计算2的N次方为x.x为uint32类型 #if defined (count_le ...