由于自己的作息极其不规律导致比赛被打爆了 但是有的时候状态其实还行。

关于Ploya定理其实特别有意思 这里粘一个[dalao的blog](https://blog.csdn.net/lyc1635566ty/article/details/52545355)

以后有时间了我再写Ploya定理的证明吧。

LINK:[POJ Color](http://poj.org/problem?id=2154)

题目大意:给一个长度为n的项链用n种颜色进行染色 项链可以旋转求有多少种本质不同的方案数。

怎么说,ploya裸题 显然一共有n种置换 每种置换之中循环节的个数是多少呢?

经过不断试验 发现对于旋转i个位置的置换 循环节个数为gcd(i,n);

于是本质不同的方案数$L=\frac{1}{|G|}\sum{n^{gcd(i,n)}}$

但是$n\leq 1000000000$ 且有T组询问$T\leq 3500$

我们暴力显然是过不了的 考虑一番特殊性质 设$d=gcd(i,n)$那么显然有d|n d一定是n的因数我们知道n的因数的数量级有$\sqrt{n}$

所以我们要是可以先办法对于$\sqrt{n}$这么多个因数各自算出数量显然也是可以得到答案的。

那么 现在存在一个子问题 $\sum_{i=1}^{n}{gcd(i,n)}$ 这个东西怎么求.

这是一个非常经典的问题了,这等价于 $\sum_{d|n}\sum_{i=1}^{\frac{n}{d}}{d\cdot [gcd(i,\frac{n}{d})=1]}$

好像推不下去了 其实这个时候该反演了...我们莫比乌斯反演一下

$\sum_{k|n}\mu(k)\sum_{d|\frac{n}{k}}\frac{n}{k}$

我也无能为力了 推到死胡同了...自闭。

那么我们从另一个方面再继续推 $\sum_{d|n}\sum_{i=1}^{\frac{n}{d}}{d\cdot [gcd(i,\frac{n}{d})=1]}$

我们发现后面那个东西其实是欧拉函数 那么上式=$\sum_{d|n}d\cdot \phi(\frac{n}{d})$

这里我们暴力枚举d 再暴力算$\phi(\frac{n}{d})$肯定会T

不妨将n质因数分解了然后 接爆搜因数 这样计算欧拉函数会快很多很多 复杂度sqrt(n)+1000左右不算很高.

当然 还有一种异常靠谱的方法 这里给出[blog链接](https://www.cnblogs.com/zhchoutai/p/8450361.html) 不太懂这种方法.

回归到原题上求: $L=\frac{1}{|n|}\sum{n^{gcd(i,n)}}$ 其实就就是 d变成了 $d^{n-1}$罢了 (爆搜可行..

Ploya定理学习笔记的更多相关文章

  1. Burnside引理与Polya定理 学习笔记

    原文链接www.cnblogs.com/zhouzhendong/p/Burnside-Polya.html 问题模型 有一个长度为 $n$ 的序列,序列中的每一个元素有 $m$ 种取值. 如果两个序 ...

  2. Lucas定理学习笔记

    从这里开始 一个有趣的问题 扩展Lucas算法 一个有趣的问题 题目大意 给定$n, m, p$,求$C_{n}^{m}$除以$p$后的余数. Subtask#1  $0\leqslant m\leq ...

  3. Master定理学习笔记

    前言 \(Master\)定理,又称主定理,用于程序的时间复杂度计算,核心思想是分治,近几年\(Noip\)常考时间复杂度的题目,都需要主定理进行运算. 前置 我们常见的程序时间复杂度有: \(O(n ...

  4. Matrix_tree Theorem 矩阵树定理学习笔记

    Matrix_tree Theorem: 给定一个无向图, 定义矩阵A A[i][j] = - (<i, j>之间的边数) A[i][i] = 点i的度数 其生成树的个数等于 A的任意n ...

  5. 生成树计数 Matrix-Tree 定理 学习笔记

    一直都知道要用Matrix-Tree定理来解决生成树计数问题,但是拖到今天才来学.博主数学不好也只能跟着各位大佬博客学一下它的应用以及会做题,证明实在是不会. 推荐博客: https://www.cn ...

  6. Polya 定理 学习笔记

    群 群的定义 我们定义,对于一个集合 \(G\) 以及二元运算 \(\times\),如果满足以下四种性质,那我们就称 \((G,\times)\) 为一个群. 1. 封闭性 对于 \(a\in G, ...

  7. 矩阵树定理&BEST定理学习笔记

    终于学到这个了,本来准备省选前学来着的? 前置知识:矩阵行列式 矩阵树定理 矩阵树定理说的大概就是这样一件事:对于一张无向图 \(G\),我们记 \(D\) 为其度数矩阵,满足 \(D_{i,i}=\ ...

  8. Pólya 定理学习笔记

    在介绍\(Polya\) 定理前,先来介绍一下群论(大概了解一下就好): 群是满足下列要求的集合: 封闭性:即有一个操作使对于这个集合中每个元素操作完都使这个集合中的元素 结合律:即对于上面那个操作有 ...

  9. [HEOI2015]小Z的房间(矩阵树定理学习笔记)

    题目描述 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时候,相邻的格子之间都有墙隔着. 你想要打通一 ...

随机推荐

  1. 弹性碰撞问题:Ants+Linear world

    题目一:Ants 传送门 题目描述 输入 输出 样例 样例输入 样例输出 分析 一句话题意:有n只蚂蚁在木棍上爬行,每只蚂蚁的速度都是每秒1单位长度,现在给你所有蚂蚁初始的位置(蚂蚁运动方向未定),蚂 ...

  2. java NIO 原理解析之学习笔记

    关键抽象 1.Buffer缓冲区 NIO数据传递模型,是一个连续的内存区域.所有数据传递均通过buffer类处理:NIO提供了字符串.整形.字节.堆等多种缓冲区. 2.Channel(通道) NIO把 ...

  3. C#读取Excel转换为DataBle

    /// <summary> /// Excel->DataTable /// </summary> /// <param name="filePath&q ...

  4. Docker装的Oracle 11g没有HR用户怎么办?一个脚本解决问题!

    #0x0 问题描述 这个学期有一门Oracle的课,我图省事就直接拉了个docker镜像来做练习,一直倒也没啥问题,但是今天的作业需要用到HR这个模板用户. 然而我执行alter user hr ac ...

  5. djangorestframework学习1-通过HyperlinkedModelSerializer,ModelViewSet,routers编写第一个接口

    前提首先安装了django,安装方式:pip install django 1. djangorestftamework安装: pip install djangorestframework 2. 创 ...

  6. 数据可视化实例(八): 边缘直方图(matplotlib,pandas)

    https://datawhalechina.github.io/pms50/#/chapter6/chapter6 边缘直方图 (Marginal Histogram) 边缘直方图具有沿 X 和 Y ...

  7. Idea 自定义快捷代码输入 如syso => System.out.println()

    前言 之前一直用的Eclipse System.out.println()的快捷代码输入 是 syso,但是在Idea 不好使用了,后来搜索了一番才知道,在Idea中的快捷输入是 sout,这里我就想 ...

  8. CSS数据样式

    CSS数据样式 表格 定制表格 我们除了可以使用<table>标签进行绘制表格,在css3中display也支持进行表格的样式绘制. 样式规则 说明 table 对应 table tabl ...

  9. 循序渐进VUE+Element 前端应用开发(16)--- 组织机构和角色管理模块的处理

    在前面随笔<循序渐进VUE+Element 前端应用开发(15)--- 用户管理模块的处理>中介绍了用户管理模块的内容,包括用户列表的展示,各种查看.编辑.新增对话框的界面处理和后台数据处 ...

  10. P4017 最大食物链计数(洛谷)

    老师开始帮我们查漏补缺啦!我们的老师这两天给了我们一些我们没怎么学的函数和算法,比如STL的函数和拓扑排序之类的,这个题就是讲拓扑排序的. 先看题板: 题目背景 你知道食物链吗?Delia 生物考试的 ...