Hello GCN
参考链接: https://www.zhihu.com/question/54504471/answer/611222866

1 拉普拉斯矩阵
- 参考链接: http://bbs.cvmart.net/articles/281/cong-cnn-dao-gcn-de-lian-xi-yu-qu-bie-gcn-cong-ru-men-dao-jing-fang-tong-qi
- L = D - A, A 为图的邻接矩阵, D 为顶点度的对角矩阵, L 为 拉普拉斯矩阵
1.1 拉普拉斯矩阵的类别


3 图卷积的参数
- 参考链接: http://bbs.cvmart.net/articles/281/cong-cnn-dao-gcn-de-lian-xi-yu-qu-bie-gcn-cong-ru-men-dao-jing-fang-tong-qi
- 由 1 小节得知, 图卷积的公式, 图卷积训练的参数在公式中对角矩阵中, GCN 的训练有两个版本, 第一版思维简单但是因为其缺点已经不再使用, 现在大都使用第二个版本
3.1 第一代图卷积训练
- 直接将对角矩阵中对角上的值当做参数
- 表示激活函数
- 表示输入向量
- 优点
- 发现中间的除去 的公式为拉普拉斯矩阵的分解公式, 那么在运算中不再需要分解公式, 直接使用拉普拉斯矩阵即可, 减少了计算量
- 参数少
3.2 第二代图卷积训练
- 将 转为了 , 其中为任意参数, 需要进行随机初始化, 即边的权重
- 借助 U 和拉普拉斯矩阵的特征进行化简, 得到
- L 表示拉普拉斯矩阵
- K 表示顶点的阶数, 顶点的邻居节点
- x 表示输入的特征, 为了形象的理解, 以一张灰度图为例
- 图的结构即图像的方格排列, 不需要人为的设计, 因为图片的形状就是如此, 每一个方格是图的一个顶点
- 像素值即每一个顶点的特征, 只不过在一般的图结构中, 顶点的值为一个特征向量
- 表示边的权重, 也是网络需要训练并且优化的参数
3.3 图解图卷积


- GCN每一次卷积对所有的顶点都完成了图示的操作
4 GCN 分类的效果
- 图结构如下

- 输入 PageID, IP, UA, DeviceID, UserID, 通过卷积, 得到中间节点的特征, 也就是分类的结果
- 与比较 GBDT 相比, 效果更好

5 图卷积网络的拓扑结构
- 参考链接: https://mp.weixin.qq.com/s/356WvVn1Tz0axsKd8LJW4Q
- 拓扑结构

- 和 CNN 类似, 每一层都是叠加堆积在一起的, 经过卷积得到的结果, 通过激活函数(ReLU, Sigmoid等)传到下一层
- 不是每一个顶点都要进行卷积重新计算新的特征, 而是选择靠近中心的顶点
- 在上图中, 表示的不是图的结构, 也不是边所代表的的权重, 而是每一个顶点对应的特征向量, 在图片中, 每一个顶点对应的是一个标量, 即像素值
- 在3 图卷积的参数中提到了图卷积的参数与公式, 第二代的图卷积公式在运用的时候回转变成一个更清晰的表示公式
- 表示标准化系数
- H 表示上一层每一个顶点的特征向量, 维度为 NxF, N 表示顶点个数, F 表示特征向量的维度
- W 表示边权重
- 公式的定性理解
- 选定一个顶点 V, 确定邻域, 如果个数不到邻域个数, 则补充哑顶点, 如果超过, 则删除对于的顶点
- 获取邻域中顶点的特征向量, 将其余顶点 V 的边(权重)相乘再相加, 得到新的维度的特征向量
- 防止较大的尺度变化, 将得到的结果进行标准化
- 图卷积的特点
Hello GCN的更多相关文章
- GCN code parsing
GCN code parsing 2018-07-18 20:39:11 utils.py --- load data def load_data(path="../data/cora/ ...
- 【语义分割】large kernel matters中GCN模块的pytorch实现
GCN模块的实现比较简单,在giuhub上看到两种实现,轻微不同 实现一:https://github.com/ycszen/pytorch-segmentation/blob/master/gcn. ...
- GCN和GCN在文本分类中应用
1.GCN的概念 传统CNN卷积可以处理图片等欧式结构的数据,却很难处理社交网络.信息网络等非欧式结构的数据.一般图片是由c个通道h行w列的矩阵组成的,结构非常规整.而社交网络.信息网络 ...
- GNN 相关资料记录;GCN 与 graph embedding 相关调研
最近做了一些和gnn相关的工作,经常听到GCN 和 embedding 相关技术,感觉很是困惑,所以写下此博客,对相关知识进行索引和记录: 参考链接: https://www.toutiao.com/ ...
- GCN 实现3 :代码解析
1.代码结构 ├── data // 图数据 ├── inits // 初始化的一些公用函数 ├── layers // GCN层的定义 ├── metrics // 评测指标的计算 ├── mode ...
- GCN实现3
参考 : 首先看两篇论文,大概了解一下原理性的东西: GRAPH CONVOLUTIONAL NETWORKS THOMAS KIPF, 30 SEPTEMBER 2016 http://tkipf. ...
- GCN 简单numpy实现
`#参考:https://blog.csdn.net/weixin_42052081/article/details/89108966 import numpy as np import networ ...
- GCN python 实现2:利用GCN进行节点分类
参考:https://www.baidu.com/link?url=5oU-O_YQV8DdSTtRkgzsQ_vuwjJHyUOxqeAKhq98ZA5XtvKW8PNQwXgSlr5GpESRqh ...
- GCN
REFERENCE: https://www.jianshu.com/p/ad528c40a08f https://www.zhihu.com/question/54504471 图有两个基本的特性: ...
- GCN总结
一.GCN简介 GNN模型主要研究图节点的表示(Graph Embedding),图边结构预测任务和图的分类问题,后两个任务也是基于Graph Embedding展开的.目前论文重点研究网络的可扩展性 ...
随机推荐
- scrapy 基础组件专题(四):信号运用
一.scrapy信号使用的简单实例 import scrapy from scrapy import signals from ccidcom.items import CcidcomItem cla ...
- 数据分析05 /pandas的高级操作
数据分析05 /pandas的高级操作 目录 数据分析05 /pandas的高级操作 1. 替换操作 2. 映射操作 3. 运算工具 4. 映射索引 / 更改之前索引 5. 排序实现的随机抽样/打乱表 ...
- 数据可视化之分析篇(八)Power BI数据分析应用:结构百分比分析法
https://zhuanlan.zhihu.com/p/113113765 PowerBI数据分析02:结构百分比分析法 作者:海艳 结构百分比分析法,又称纵向分析,是指同一期间财务报表中不同项目间 ...
- JS 判断是否为数字 数字型特殊值
JS 数字型三个特殊值 Infinity ,代表无穷大,大于任何数值 -Infinity ,代表无穷小,小于任何数值 NaN ,Not a number,代表一个非数值 isNaN的使用: isNa ...
- AI开发利器:HiLens Studio技术解读
摘要:传统的AI应用开发和部署意味着高成本和高门槛,借助HiLens Studio,AI应用开发和部署仅需要三步. 曾几何时, 在我们青春年少时, 当我们看到某篇AI的技术文章时, 心中总不免想要在一 ...
- 题解 洛谷 P5324 【[BJOI2019]删数】
先考虑对于一个序列,能使其可以删空的的修改次数. 首先可以发现,序列的排列顺序是没有影响的,所以可以将所有数放到桶里来处理. 尝试对一个没有经过修改的可以删空的序列来进行删数,一开始删去所有的\(n\ ...
- js 从目标数组中过滤掉 一个数组元素,
标题描述的有点僵硬,大概需求是,从目标数组中过滤掉我想要删除的元素集合,这里使用的是遍历+过滤器的组合,很方便,做个笔记! let old = ["AE_CN_SUPER_ECONOMY_G ...
- https://blog.csdn.net/yongchaocsdn/article/details/53355296
https://blog.csdn.net/yongchaocsdn/article/details/53355296
- socket网络
Socket 是进程间通信的一种方式,它与其他进程间通信的一个主要不同是:它能实现不同主机间的进程间通信,我们网络上各种各样的服务大多都是基于 Socket 来完成通信的,例如我们每天浏览网页.QQ ...
- laravel 用户认证简单示例
一.模型代码: 实现接口:\Illuminate\Contracts\Auth\Authenticatable 并引入trait:\Illuminate\Auth\Authenticatable &l ...