dp斜率优化
算法-dp斜率优化
前置知识:
凸包
斜率优化很玄学,凭空讲怎么也讲不好,所以放例题。
[APIO2014]序列分割
给你一个长度为 \(n\) 的序列 \(a_1,a_2,...,a_n\)。你可以切 \(k\) 刀,每一刀可以把某一段序列切成两段,然后获得两段和成绩的收益。最后求最大收益和得到最大收益的切割方案。
数据范围:\(2\le n\le 100000,1\le k\le\min\{n-1,200\},1\le a_i\le 10000\)。
首先证明,切的顺序不影响结果。设序列为连着的 \(a,b,c\) 三段。三段的和分别为 \(A,B,C\)。
如果先切开 \(a|b,c\) 再切开 \(a|b|c\),获益为 \(A(B+C)+BC=AB+AC+BC\)。
如果先切开 \(a,b|c\) 再切开 \(a|b|c\),获益为 \((A+B)C+AB=AC+BC+AB\)。
所以以此类推,切割的顺序不影响最终收益大小。
然后开始 \(\texttt{dp}\),\(F_{i,j}\) 表示前 \(i\) 个数切 \(j\) 刀的最大收益,\(s_i=\sum\limits^i_{j=1}a_j\),则有状态转移方程:
\]
因为 \(F_{i,j}\) 只由 \(F_{t,j-1}\) 推得,所以可以滚动数组 \(F\),令 \(f_j=F_{i,j}\),\(g_j=F_{i,j-1}\),那么上式就变成:
\]
如果直接暴力跑一次 \(2\) 重循环的 \(\texttt{dp}\),\(\Theta(n^2k)\) 会 \(\color{#357}{\texttt{TLE}}\),但你仔细观察 \(g_t+s_t(s_i-s_t)\) 这个式子,如果有一个 \(p(0\le p<i)\) 满足
\]
则推式可得:
\]
\]
令 \(slope=\frac{(g_p-s_p^2)-(g_t-s_t^2)}{s_t-s_p}\)
如果把 \((-s_p,g_p-s_p^2)\) 和 \((-s_t,g_t-s_t^2)\) 看作平面直角坐标系中的两个点,那么 \(slope\) 就是这两个点连边的斜率。
因为 \(\texttt{dp}\) 循环 \(i=1\to n\) 时 \(s_i\) 是递增的,而两个点的 \(slope\) 又不是随 \(s_i\) 变化的,所以可以维护一个双头单调队列,每次把 \(i\) 放到队尾,队列满足:
- 从左到右数递增。
- 从左到右相邻两个数所对应的点连边的斜率递减。
然后维护队列并 \(\texttt{dp}\):
循环 \(j=1\to k\):
赋值滚动数组 \(g=f\),清零 \(f\)。
清空队列并在队列中加入 \(0\)(相当于原点)。
循环 \(i=1\to n\):把队列头相邻两个数 \(slope\le s_i\) 的踢掉。
取队列头 \(p\),\(f_i=g_p+s_p(s_i-s_p)\)。
因为最终要输出方案,所以记录索引 \(pro_{i,j}=p\)。
把 \(i\) 看作点 \((-s_i,g_i-s_i^2)\),如果队尾相邻元素的 \(slope\ge i\) 和队尾元素的 \(slope\),就把队尾元素踢掉。
队尾加入 \(i\)。
然后在单调队列和斜率优化的加持下,因为维护队列和循环 \(\texttt{dp}\) 的总时间复杂度为 \(\Theta(n)\), 所以总的时间复杂度缩减为 \(\Theta(nk)\)。于是蒟蒻逃脱了 \(\color{#357}{\texttt{TLE}}\) 的风险。
Code:
#include <bits/stdc++.h>
using namespace std;
/*
{a},{b},{c}
a(b+c)+bc=ab+ac+bc\-\Greatitude
(a+b)c+ab=ac+bc+ab/-/
*/
#define lng long long
const int N=1e5+10,K=210;
int n,k,a[N],q[N],p[N][K]; //n,k,ai,queue,方案路径
lng f[N],g[N],sum[N]; //fi,gt,si
double funct(int x,int y){ //两个点的slope
if(sum[x]==sum[y]) return -1e16;
return 1.0*((g[x]-sum[x]*sum[x])-(g[y]-sum[y]*sum[y]))/(sum[y]-sum[x]);
}
int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
scanf("%d",a+i),sum[i]=sum[i-1]+a[i];
for(int j=1;j<=k;j++){ //维护单调队列+dp
for(int i=1;i<=n;i++) g[i]=f[i],f[i]=0;
int l=1,r=0;
q[++r]=0;
for(int i=1;i<=n;i++){
while(l<r&&funct(q[l],q[l+1])<=sum[i]) l++;
f[i]=g[q[l]]+sum[q[l]]*(sum[i]-sum[q[l]]);
p[i][j]=q[l];
while(l<r&&funct(q[r-1],q[r])>=funct(q[r],i)) r--;
q[++r]=i;
}
}
printf("%lld\n",f[n]); //输出最终最大收益
for(int i=k,j=n;i>=1;i--)
printf("%d%c",j=p[j][i],"\n "[i>1]); //输出切割方案。
return 0;
}
祝大家学习愉快!
dp斜率优化的更多相关文章
- 【BZOJ-4518】征途 DP + 斜率优化
4518: [Sdoi2016]征途 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 230 Solved: 156[Submit][Status][ ...
- 【BZOJ-3437】小P的牧场 DP + 斜率优化
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 705 Solved: 404[Submit][Status][Discuss ...
- 【BZOJ-1010】玩具装箱toy DP + 斜率优化
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8432 Solved: 3338[Submit][St ...
- 【BZOJ】1096: [ZJOI2007]仓库建设(dp+斜率优化)
http://www.lydsy.com/JudgeOnline/problem.php?id=1096 首先得到dp方程(我竟然自己都每推出了QAQ)$$d[i]=min\{d[j]+cost(j+ ...
- BZOJ 1096: [ZJOI2007]仓库建设(DP+斜率优化)
[ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在 ...
- 学渣乱搞系列之dp斜率优化
学渣乱搞系列之dp斜率优化 By 狂徒归来 貌似dp的斜率优化一直很难搞啊,尤其是像我这种数学很挫的学渣,压根不懂什么凸包,什么上凸下凸的,哎...说多了都是泪,跟wdd讨论了下,得出一些结论.本文很 ...
- DP斜率优化总结
目录 DP斜率优化总结 任务安排1 任务计划2 任务安排3 百日旅行 DP斜率优化总结 任务安排1 首先引入一道题,先\(O(N^2)\)做法:分别预处理出\(T_i,C_i\)前缀和\(t[i],c ...
- HDU 3507 [Print Article]DP斜率优化
题目大意 给定一个长度为\(n(n \leqslant 500000)\)的数列,将其分割为连续的若干份,使得 $ \sum ((\sum_{i=j}^kC_i) +M) $ 最小.其中\(C_i\) ...
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
随机推荐
- 三、分布式编程总结------linux多线程服务端编程
- 剑指offer刷题(算法类_2)
排序 035-数组中的逆序对(归并排序) 题目描述 题解 代码 复杂度 029-最小的K个数(堆排序) 题目描述 题解 代码 复杂度 029-最小的K个数(快速排序) 题目描述 题解 代码 复杂度 位 ...
- REDHAT 7.5beta 新推出的VDO功能
前言 关于VDO VDO的技术来源于收购的Permabit公司,一个专门从事重删技术的公司,所以技术可靠性是没有问题的 VDO是一个内核模块,目的是通过重删减少磁盘的空间占用,以及减少复制带宽,VDO ...
- 信息论-Turbo码学习
1.Turbo码: 信道编码的初期:分组码实现编码,缺点有二:只有当码字全部接收才可以开始译码,需要精确的帧同步时延大,增益损失多 解决方案:卷积码:充分利用前一时刻和后一时刻的码组,延时小,缺点:计 ...
- hadoop启动脚本
记录一下一个简单的hadoop启动脚本 就是启动zookeeper集群,hadoop的HDFS和YRAN的脚本 start-cluster.sh 关于关闭的脚本,只需要顺序换一下,然后将start改为 ...
- Weblogic CVE-2020-2551漏洞复现&CS实战利用
Weblogic CVE-2020-2551漏洞复现 Weblogic IIOP 反序列化 漏洞原理 https://www.anquanke.com/post/id/199227#h3-7 http ...
- 记一次容器内执行ansible命令卡住
1.由来 最近在使用kylin_v10系统,发现当在此系统下运行的容器内执行#ansible localhost -m setup 命令会卡住不动,于是和同事一起经过如下排查最终找到解决问题的办法. ...
- 「LOJ #6500」「雅礼集训 2018 Day2」操作
description LOJ 6500 solution 根据常有套路,容易想到将区间差分转化为异或数组上的单点修改,即令\(b_i=a_i \ xor\ a_{i-1}\), 那么将\([l,l+ ...
- php bypass disable_function 命令执行 方法汇总简述
1.使用未被禁用的其他函数 exec,shell_exec,system,popen,proc_open,passthru (python_eval?perl_system ? weevely3 wi ...
- Java蓝桥杯01——第一题集锦:堆煤球、购物单、哪天返回、第几天、分数
堆煤球(2016JavaB) 有一堆煤球,堆成三角棱锥形.具体: 第一层放1个, 第二层3个(排列成三角形), 第三层6个(排列成三角形), 第四层10个(排列成三角形), .... 如果一共有100 ...