前言:世间还有这么卡常的题……

------------------

题目链接

题目大意:给定长度为$n$的序列${a_i}$。有$m$次询问,问$[l,r]$内出现正偶数次的数字有多少个。

这题跟蒲公英有些相似,不同的是这题特别卡常……

设$sum[i][j]$表示前$i$块内$j$出现的次数,$ans[i][j]$表示块$i$到$j$的答案。

主要的问题是怎么在$O(n \sqrt n)$内进行预处理。我们采用“边扫边求”的方式来进行处理,扫的时候开一个桶,注意不要重复统计。对于$ans[i][j]$,我们有:

设$t$为块$i$到$j-1$内数$k$出现的次数。

1.如果$t$是奇数并且$bucket[k]$也是奇数,那么$ans[i][j]++$。

2.如果$t$是偶数并且$bucket[k]$是奇数,那么$ans[i][j]--$。

剩下的就跟蒲公英的处理差不多了。注意不要使用memset!!!!!!(血与泪的教训QAQ)

代码:

//求l到r中出现偶次的数字的个数
#include<bits/stdc++.h>
using namespace std;
int sum[][],ans[][];//sum 前i块中j出现的次数 ans 从i块到j块的答案
int n,m,c,a[],l,r,block,tot,t,vis[],bucket[],last;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if (ch=='-') f=-;ch=getchar();}
while(isdigit(ch)){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline int getpos(int x){return (x-)/block+;}
inline void build()
{
for (int i=;i<=tot;i++)
{
for (int j=;j<=c;j++) sum[i][j]=sum[i-][j];
for (int j=(i-)*block+;j<=i*block;j++) sum[i][a[j]]++;
}
for (int i=;i<=tot;i++)
for (int j=i;j<=tot;j++)
{
ans[i][j]=ans[i][j-];
for (int k=(j-)*block+;k<=j*block;k++)
{
if (!vis[a[k]]) vis[a[k]]=,bucket[a[k]]=;
else bucket[a[k]]++;
}
for (int k=(j-)*block+;k<=j*block;k++)
{
if (!vis[a[k]]) continue;
vis[a[k]]=;
int t=sum[j-][a[k]]-sum[i-][a[k]];
if (!t){if (bucket[a[k]]%==) ans[i][j]++;}
else{
if (t%==&&bucket[a[k]]%==) ans[i][j]++;
else if (t%==&&bucket[a[k]]%==) ans[i][j]--;
}
}
}
}
inline void query()
{
int cnt=;
if (getpos(r)-getpos(l)<=)
{
for (int i=l;i<=r;i++)
{
if (!vis[a[i]]) vis[a[i]]=,bucket[a[i]]=;
else bucket[a[i]]++;
}
for (int i=l;i<=r;i++)
{
if (!vis[a[i]]) continue;
vis[a[i]]=;
if (bucket[a[i]]%==) cnt++;
}
printf("%d\n",cnt);last=cnt;
return;
}
cnt=ans[getpos(l)+][getpos(r)-];
for (int i=l;i<=getpos(l)*block;i++)
{
if (!vis[a[i]]) vis[a[i]]=,bucket[a[i]]=;
else bucket[a[i]]++;
}
for (int i=(getpos(r)-)*block+;i<=r;i++)
{
if (!vis[a[i]]) vis[a[i]]=,bucket[a[i]]=;
else bucket[a[i]]++;
}
for (int i=l;i<=getpos(l)*block;i++)
{
if (!vis[a[i]]) continue;
vis[a[i]]=;
int t=sum[getpos(r)-][a[i]]-sum[getpos(l)][a[i]];
if (!t){if (bucket[a[i]]%==) cnt++;}
else{
if (t%==&&bucket[a[i]]%==) cnt++;
if (t%==&&bucket[a[i]]%==) cnt--;
}
}
for (int i=(getpos(r)-)*block+;i<=r;i++)
{
if (!vis[a[i]]) continue;
vis[a[i]]=;
int t=sum[getpos(r)-][a[i]]-sum[getpos(l)][a[i]];
if (!t){if (bucket[a[i]]%==) cnt++;}
else{
if (t%==&&bucket[a[i]]%==) cnt++;
if (t%==&&bucket[a[i]]%==) cnt--;
}
}
printf("%d\n",cnt);last=cnt;
}
int main()
{
n=read(),c=read(),m=read();
block=sqrt(n);
tot=n/block;
if (n%block) tot++;
for (int i=;i<=n;i++) a[i]=read();
build();
for (int i=;i<=m;i++)
{
l=read(),r=read();
l=(l+last)%n+,r=(r+last)%n+;
if (l>r) swap(l,r);
query();
}
return ;
}

【BZOJ2821】作诗 题解(分块+前缀和)的更多相关文章

  1. BZOJ2821 作诗(Poetize) 分块

    题意 算法 经验总结 代码 题意 不带修改,查询数列[1,n]中[l,r]内的出现正偶数次的数的个数, 数列中的数 <= 1e5, n <= 1e5, 强制在线 算法 ​ 查询的内容: 区 ...

  2. BZOJ2821 作诗(分块)

    和区间众数几乎一模一样的套路. // luogu-judger-enable-o2 #include<iostream> #include<cstdio> #include&l ...

  3. BZOJ2821 作诗(Poetize) 【分块】

    BZOJ2821 作诗(Poetize) Description 神犇SJY虐完HEOI之后给傻×LYD出了一题: SHY是T国的公主,平时的一大爱好是作诗. 由于时间紧迫,SHY作完诗之后还要虐OI ...

  4. 【BZOJ2821】作诗(Poetize) 分块

    Description 神犇SJY虐完HEOI之后给傻×LYD出了一题:SHY是T国的公主,平时的一大爱好是作诗.由于时间紧迫,SHY作完诗之后还要虐OI,于是SHY找来一篇长度为N的文章,阅读M次, ...

  5. 【分块】BZOJ2821 作诗(Poetize)

    2821: 作诗(Poetize) Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 3265  Solved: 951[Submit][Status][ ...

  6. BZOJ2821:作诗——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=2821 问题描述 神犇SJY虐完HEOI之后给傻×LYD出了一题: SHY是T国的公主,平时的一大爱好 ...

  7. 作诗(si)[分块]

    题目描述 神犇SJY虐完HEOI之后给傻×LYD出了一题: SHY是T国的公主,平时的一大爱好是作诗. 由于时间紧迫,SHY作完诗之后还要虐OI,于是SHY找来一篇长度为N的文章,阅读M次,每次只阅读 ...

  8. BZOJ 2821: 作诗(Poetize)( 分块 )

    分块,分成N^0.5块.O(N^1.5)预处理出sm[i][j]表示前i块中j的出现次数, ans[i][j]表示第i~j块的答案. 然后就可以O(N^0.5)回答询问了.总复杂度O((N+Q)N^0 ...

  9. 洛谷 P4135 作诗 题解

    题面. 之前做过一道很类似的题目 洛谷P4168蒲公英 ,然后看到这题很快就想到了解法,做完这题可以对比一下,真的很像. 题目要求区间内出现次数为正偶数的数字的数量. 数据范围1e5,可以分块. 我们 ...

随机推荐

  1. postman做自动化测试1——collection runner

    一.添加collection 打开postman,点击“collection”页签,点击collection下面的添加按钮. 弹出 新建面板,输入名称和描述,点击“creat”按钮,新建成功 3 点击 ...

  2. flask 源码专题(一):app.run()的背后

    当我们用Flask写好一个app后, 运行app.run()表示监听指定的端口, 对收到的request运行app生成response并返回. 现在分析一下, 运行app.run()后具体发生了什么事 ...

  3. 设计模式:command模式

    目的:将命令设计成类的形式,并可以组织成队列 优点: 在需要的情况下,可以比较容易地将命令记入日志 可以容易的实现对请求的撤销和重做 由于新的具体命令类不影响其他的命令类,因此增加新的具体命令类很容易 ...

  4. 【mysql】- 锁篇(上)

    回顾 问题 事务并发执行时可能带来各种问题,并发事务访问相同记录的情况大致可以划分为3种 读-读情况:即并发事务相继读取相同的记录 读取操作本身不会对记录有什么影响,并不会引起什么问题,所以允许这种情 ...

  5. 深入理解JVM(二)垃圾收集器

    GC三问: 哪些内存需要回收? 什么时候回收? 如何回收? 程序计数器.虚拟机栈.本地方法栈随线程而生,随线程而灭,栈帧的内存分配在类结构确定下来就已知,在方法结束或者线程结束时就会回收.所以垃圾回收 ...

  6. webview访问URL

    //    // Do any additional setup after loading the view. //    //创建WKWebView //    WKWebView *web = ...

  7. ‘100%’wuxiao

    有时候设置控件的width:’100%‘无效,  群友解释, 因为父控件的大小要靠自空间撑起来,确定    ??????

  8. ES搜索引擎-一篇文章就够了

    toc: true title: 一周一个中间件-ES搜索引擎 date: 2019-09-19 18:43:36 tags: - 中间件 - 搜索引擎 前言 在众多搜索引擎中,solr,es是我所知 ...

  9. Antd DatePicker 语言项-显示中文月份

    官网:https://ant.design/components/date-picker-cn/ 如果要显示中文,官网是这么指导的: 但是,设置后并没有生效!原因是默认的中文local文件并没有月份的 ...

  10. vector STL

    高呼“STL大法好!!” vector 是一个不限定容量的数组. 先说一下头文件 #include<vector> 1.声明 vector<int>v1;//vector元素为 ...