【Go】四舍五入在go语言中为何如此困难
四舍五入是一个非常常见的功能,在流行语言标准库中往往存在 Round 的功能,它最少支持常用的 Round half up 算法。
而在 Go 语言中这似乎成为了难题,在 stackoverflow 上搜索 [go] Round 会存在大量相关提问,Go 1.10 开始才出现 math.Round 的身影,本以为 Round 的疑问就此结束,但是一看函数注释 Round returns the nearest integer, rounding half away from zero ,这是并不常用的 Round half away from zero 实现呀,说白了就是我们理解的 Round 阉割版,精度为 0 的 Round half up 实现,Round half away from zero 的存在是为了提供一种高效的通过二进制方法得结果,可以作为 Round 精度为 0 时的高效实现分支。
带着对 Round 的‘敬畏’,我在 stackoverflow 翻阅大量关于 Round 问题,开启寻求最佳的答案,本文整理我认为有用的实现,简单分析它们的优缺点,对于不想逐步了解,想直接看结果的小伙伴,可以直接看文末的最佳实现,或者跳转 exmath.Round 直接看源码和使用吧!
Round 第一弹
在 stackoverflow 问题中的最佳答案首先获得我的关注,它在 mathx.Round 被开源,以下是代码实现:
//source: https://github.com/icza/gox/blob/master/mathx/mathx.go
package mathx
import "math"
// Round returns x rounded to the given unit.
// Tip: x is "arbitrary", maybe greater than 1.
// For example:
// Round(0.363636, 0.001) // 0.364
// Round(0.363636, 0.01) // 0.36
// Round(0.363636, 0.1) // 0.4
// Round(0.363636, 0.05) // 0.35
// Round(3.2, 1) // 3
// Round(32, 5) // 30
// Round(33, 5) // 35
// Round(32, 10) // 30
//
// For details, see https://stackoverflow.com/a/39544897/1705598
func Round(x, unit float64) float64 {
return math.Round(x/unit) * unit
}
这个实现非常的简洁,借用了 math.Round,由此看来 math.Round 还是很有价值的,大致测试了它的性能一次运算大概 0.4ns,这非常的快。
但是我也很快发现了它的问题,就是精度问题,这个是问题中一个回答的解释让我有了警觉,并开始了实验。他认为使用浮点数确定精度(mathx.Round的第二个参数)是不恰当的,因为浮点数本身并不精确,例如 0.05 在64位IEEE浮点数中,可能会将其存储为0.05000000000000000277555756156289135105907917022705078125。
//source: https://play.golang.org/p/0uN1kEG30kI
package main
import (
"fmt"
"math"
)
func main() {
f := 12.15807659924030304
fmt.Println(Round(f, 0.0001)) // 12.158100000000001
f = 0.15807659924030304
fmt.Println(Round(f, 0.0001)) // 0.15810000000000002
}
func Round(x, unit float64) float64 {
return math.Round(x/unit) * unit
}
以上代码可以在 Go Playground 上运行,得到结果并非如期望那般,这个问题主要出现在 math.Round(x/unit) 与 unit 运算时,math.Round 运算后一定会是一个精确的整数,但是 0.0001 的精度存在误差,所以导致最终得到的结果精度出现了偏差。
格式化与反解析
在这个问题中也有人提出了先用 fmt.Sprintf 对结果进行格式化,然后再采用 strconv.ParseFloat 反向解析,Go Playground 代码在这个里。
source: https://play.golang.org/p/jxILFBYBEF
package main
import (
"fmt"
"strconv"
)
func main() {
fmt.Println(Round(0.363636, 0.05)) // 0.35
fmt.Println(Round(3.232, 0.05)) // 3.25
fmt.Println(Round(0.4888, 0.05)) // 0.5
}
func Round(x, unit float64) float64 {
var rounded float64
if x > 0 {
rounded = float64(int64(x/unit+0.5)) * unit
} else {
rounded = float64(int64(x/unit-0.5)) * unit
}
formatted, err := strconv.ParseFloat(fmt.Sprintf("%.2f", rounded), 64)
if err != nil {
return rounded
}
return formatted
}
这段代码中有点问题,第一是结果不对,和我们理解的存在差异,后来一看第二个参数传错了,应该是 0.01,我想试着调整调整精度吧,我改成了 0.0001 之后发现一直都是保持小数点后两位,我细细研究了下这段代码的逻辑,发现 fmt.Sprintf("%.2f", rounded) 中写死了保留的位数,所以它并不通用,我尝试如下简单调整一下使其生效。
package main
import (
"fmt"
"strconv"
)
func main() {
f := 12.15807659924030304
fmt.Println(Round(f, 0.0001)) // 12.1581
f = 0.15807659924030304
fmt.Println(Round(f, 0.0001)) // 0.1581
fmt.Println(Round(0.363636, 0.0001)) // 0.3636
fmt.Println(Round(3.232, 0.0001)) // 3.232
fmt.Println(Round(0.4888, 0.0001)) // 0.4888
}
func Round(x, unit float64) float64 {
var rounded float64
if x > 0 {
rounded = float64(int64(x/unit+0.5)) * unit
} else {
rounded = float64(int64(x/unit-0.5)) * unit
}
var precision int
for unit < 1 {
precision++
unit *= 10
}
formatted, err := strconv.ParseFloat(fmt.Sprintf("%."+strconv.Itoa(precision)+"f", rounded), 64)
if err != nil {
return rounded
}
return formatted
}
确实获得了满意的精准度,但是其性能也非常客观,达到了 215ns/op,暂时看来如果追求精度,这个算法目前是比较完美的。
大道至简
很快我发现了另一个极简的算法,它的精度和速度都非常的高,实现还特别精简:
package main
import (
"fmt"
"github.com/thinkeridea/go-extend/exmath"
)
func main() {
f := 0.15807659924030304
fmt.Println(float64(int64(f*10000+0.5)) / 10000) // 0.1581
}
这并不通用,除非像以下这么包装:
func Round(x, unit float64) float64 {
return float64(int64(x*unit+0.5)) / unit
}
unit 参数和之前的概念不同了,保留一位小数 uint =10,只是整数 uint=1, 想对整数部分进行精度控制 uint=0.01 例如: Round(1555.15807659924030304, 0.01) = 1600,Round(1555.15807659924030304, 1) = 1555,Round(1555.15807659924030304, 10000) = 1555.1581。
这似乎就是终极答案了吧,等等……
终极方案
上面的方法够简单,也够高效,但是 api 不太友好,第二个参数不够直观,带了一定的心智负担,其它语言都是传递保留多少位小数,例如 Round(1555.15807659924030304, 0) = 1555,Round(1555.15807659924030304, 2) = 1555.16,Round(1555.15807659924030304, -2) = 1600,这样的交互才符合人性啊。
别急我在 go-extend 开源了 exmath.Round,其算法符合通用语言 Round 实现,且遵循 Round half up 算法要求,其性能方面在 3.50ns/op, 具体可以参看调优exmath.Round算法, 具体代码如下:
//source: https://github.com/thinkeridea/go-extend/blob/main/exmath/round.go
package exmath
import (
"math"
)
// Round 四舍五入,ROUND_HALF_UP 模式实现
// 返回将 val 根据指定精度 precision(十进制小数点后数字的数目)进行四舍五入的结果。precision 也可以是负数或零。
func Round(val float64, precision int) float64 {
p := math.Pow10(precision)
return math.Floor(val*p+0.5) / p
}
总结
Round 功能虽简单,但是受到 float 精度影响,仍然有很多人在四处寻找稳定高效的算法,参阅了大多数资料后精简出 exmath.Round 方法,期望对其他开发者有所帮助,至于其精度使用了大量的测试用例,没有超过 float 精度范围时并没有出现精度问题,未知问题等待社区检验,具体测试用例参见 round_test。
转载:
本文作者: 戚银(thinkeridea)
本文链接: https://blog.thinkeridea.com/202101/go/round.html
版权声明: 本博客所有文章除特别声明外,均采用 CC BY 4.0 CN协议 许可协议。转载请注明出处!
【Go】四舍五入在go语言中为何如此困难的更多相关文章
- C语言中内存分配那些事儿
C程序的内存结构 C语言的之所以复杂,首先它的内存模型功不可没.不像某些那样的高级语言只需要在使用对象的时候,用new创建.所有之后的事情,你不需要操心.对于C语言,所有与内存相关的东西,都需要熟悉, ...
- C语言中最常用的三种输入输出函数scanf()、printf()、getchar()和putchar()
本文给大家介绍C语言中最常用的三种输入输出函数scanf().printf().getchar()和putchar(). 一.scanf()函数格式化输入函数scanf()的功能是从键盘上输入数据,该 ...
- C语言中强制数据类型转换(转)
原文地址不详 字符型变量的值实质上是一个8位的整数值,因此取值范围一般是-128-127,char型变量也可以加修饰符unsigned,则unsigned char 型变量的取值范围是0-255(有些 ...
- C语言中强制类型转换总结
C语言中强制类型转换总结 ● 字符型变量的值实质上是一个8位的整数值,因此取值范围一般是-128-127,char型变量也可以加修饰符unsigned,则unsigned char 型变量的取值范围 ...
- JAVA语言中的修饰符
JAVA语言中的修饰符 -----------------------------------------------01--------------------------------------- ...
- Java语言中的面向对象特性总结
Java语言中的面向对象特性 (总结得不错) [课前思考] 1. 什么是对象?什么是类?什么是包?什么是接口?什么是内部类? 2. 面向对象编程的特性有哪三个?它们各自又有哪些特性? 3. 你知 ...
- python语言中的编码问题
在编程的过程当中,常常会遇到莫名其妙的乱码问题.很多人选择出了问题直接在网上找答案,把别人的例子照搬过来,这是快速解决问题的一个好办法.然而,作为一个严谨求实的开发者,如果不从源头上彻底理解乱码产生的 ...
- 在C语言中利用PCRE实现正则表达式
1. PCRE简介 2. 正则表达式定义 3. PCRE正则表达式的定义 4. PCRE的函数简介 5. 使用PCRE在C语言中实现正则表达式的解析 6. PCRE函数在C语言中的使用小例子 1. P ...
- C语言中函数声明实现的位置
在学习C语言的时候我遇到了这么个事情,因为之前先学习的C#,在C#编译器中,函数的声明位置不会影响编译的结果,但是在C语言中却发生了错误 先看一段代码: #include <stdio.h> ...
随机推荐
- intelliJ IDEA 鼠标光标消失问题
经常会遇到,光标就莫名消失了,得重启 IntelliJ IDEA 才行,到官方论坛询问才得知,系统时间如果被调前就会发生这个情况,我想原因是之前的破解是用的调系统时间的方式,所以留下了这个bug,总之 ...
- Python中数字按位取反的方法
老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python博客地址 Python中有个按位取反运算符:,但这个运算符并不是真正的按位取反,而是效果相当于原值乘以负一再减 ...
- 安装pyspider出现的问题
本文来自微信公众号:coder_xiaobu,欢迎关注 一.安装pyspider pip install pyspider 二.启动 pyspider all 三.安装中出现的问题处理 安装的时候出现 ...
- Go微服务实践之增删改查
从此篇文章开始,我们来陆续介绍 go-zero 开发一个项目所需要的组件和开发实践. 首先我们从 model 层开始,来说说go-zero 的API以及封装细节.首先 model 层连接的API集中在 ...
- Kruskal重构树——[NOI2018] 归程
题目链接: UOJ LOJ 感觉 Kruskal 重构树比较简单,就不单独开学习笔记了. Statement 给定一个 \(n\) 点 \(m\) 边的无向连通图,用 \(l,a\) 描述一条边的长度 ...
- AcWing 276. I-区域
题目链接 设 \(0\) 为单调伸长, \(1\) 为单调伸短. 设 \(f[i][j][l][r][x(0 / 1)][y (0 / 1)]\) 为第 \(i\) 行,已经选出\(j\)个格子,第\ ...
- mybatis逆向工程运行
命令: mvn mybatis-generator:generate 项目结构: generatorConfig.xml内容示例 <?xml version="1.0" en ...
- C++ 纯虚函数与抽象类——virtual 和纯说明符 “=0”
什么时候使用纯虚函数 某些类,在现实角度和项目角度都不需要实例化(不需要创建它的对象),这个类中定义的某些成员函数只是为了提供一个形式上的接口,准备上子类来做具体的实现.此时这个方法就可以定义为&qu ...
- Java8的Lambda表达式,你会不?
目录 理解Lambda 基础语法 函数式接口 常用的函数式接口 消费型接口 供给型接口 断言型接口 函数型接口 方法引用 数组引用 构造器引用 总结 参考阅读 理解Lambda Lambda表达式可以 ...
- Java中CAS原理分析(volatile和synchronized浅析)
CAS是什么? CAS英文解释是比较和交换,是cpu底层的源语,是解决共享变量原子性实现方案,它定义了三个变量,内存地址值对应V,期待值E和要修改的值U,如下图所示,这些变量都是在高速缓存中的,如果两 ...