四舍五入是一个非常常见的功能,在流行语言标准库中往往存在 Round 的功能,它最少支持常用的 Round half up 算法。

而在 Go 语言中这似乎成为了难题,在 stackoverflow 上搜索 [go] Round 会存在大量相关提问,Go 1.10 开始才出现 math.Round 的身影,本以为 Round 的疑问就此结束,但是一看函数注释 Round returns the nearest integer, rounding half away from zero ,这是并不常用的 Round half away from zero 实现呀,说白了就是我们理解的 Round 阉割版,精度为 0 的 Round half up 实现,Round half away from zero 的存在是为了提供一种高效的通过二进制方法得结果,可以作为 Round 精度为 0 时的高效实现分支。

带着对 Round 的‘敬畏’,我在 stackoverflow 翻阅大量关于 Round 问题,开启寻求最佳的答案,本文整理我认为有用的实现,简单分析它们的优缺点,对于不想逐步了解,想直接看结果的小伙伴,可以直接看文末的最佳实现,或者跳转 exmath.Round 直接看源码和使用吧!

Round 第一弹

stackoverflow 问题中的最佳答案首先获得我的关注,它在 mathx.Round 被开源,以下是代码实现:

//source: https://github.com/icza/gox/blob/master/mathx/mathx.go
package mathx import "math" // Round returns x rounded to the given unit.
// Tip: x is "arbitrary", maybe greater than 1.
// For example:
// Round(0.363636, 0.001) // 0.364
// Round(0.363636, 0.01) // 0.36
// Round(0.363636, 0.1) // 0.4
// Round(0.363636, 0.05) // 0.35
// Round(3.2, 1) // 3
// Round(32, 5) // 30
// Round(33, 5) // 35
// Round(32, 10) // 30
//
// For details, see https://stackoverflow.com/a/39544897/1705598
func Round(x, unit float64) float64 {
return math.Round(x/unit) * unit
}

这个实现非常的简洁,借用了 math.Round,由此看来 math.Round 还是很有价值的,大致测试了它的性能一次运算大概 0.4ns,这非常的快。

但是我也很快发现了它的问题,就是精度问题,这个是问题中一个回答的解释让我有了警觉,并开始了实验。他认为使用浮点数确定精度(mathx.Round的第二个参数)是不恰当的,因为浮点数本身并不精确,例如 0.05 在64位IEEE浮点数中,可能会将其存储为0.05000000000000000277555756156289135105907917022705078125

//source: https://play.golang.org/p/0uN1kEG30kI
package main import (
"fmt"
"math"
) func main() {
f := 12.15807659924030304
fmt.Println(Round(f, 0.0001)) // 12.158100000000001 f = 0.15807659924030304
fmt.Println(Round(f, 0.0001)) // 0.15810000000000002
} func Round(x, unit float64) float64 {
return math.Round(x/unit) * unit
}

以上代码可以在 Go Playground 上运行,得到结果并非如期望那般,这个问题主要出现在 math.Round(x/unit)unit 运算时,math.Round 运算后一定会是一个精确的整数,但是 0.0001 的精度存在误差,所以导致最终得到的结果精度出现了偏差。

格式化与反解析

在这个问题中也有人提出了先用 fmt.Sprintf 对结果进行格式化,然后再采用 strconv.ParseFloat 反向解析,Go Playground 代码在这个里。

source: https://play.golang.org/p/jxILFBYBEF
package main import (
"fmt"
"strconv"
) func main() {
fmt.Println(Round(0.363636, 0.05)) // 0.35
fmt.Println(Round(3.232, 0.05)) // 3.25
fmt.Println(Round(0.4888, 0.05)) // 0.5
} func Round(x, unit float64) float64 {
var rounded float64
if x > 0 {
rounded = float64(int64(x/unit+0.5)) * unit
} else {
rounded = float64(int64(x/unit-0.5)) * unit
}
formatted, err := strconv.ParseFloat(fmt.Sprintf("%.2f", rounded), 64)
if err != nil {
return rounded
}
return formatted
}

这段代码中有点问题,第一是结果不对,和我们理解的存在差异,后来一看第二个参数传错了,应该是 0.01,我想试着调整调整精度吧,我改成了 0.0001 之后发现一直都是保持小数点后两位,我细细研究了下这段代码的逻辑,发现 fmt.Sprintf("%.2f", rounded) 中写死了保留的位数,所以它并不通用,我尝试如下简单调整一下使其生效。

package main

import (
"fmt"
"strconv"
) func main() {
f := 12.15807659924030304
fmt.Println(Round(f, 0.0001)) // 12.1581 f = 0.15807659924030304
fmt.Println(Round(f, 0.0001)) // 0.1581 fmt.Println(Round(0.363636, 0.0001)) // 0.3636
fmt.Println(Round(3.232, 0.0001)) // 3.232
fmt.Println(Round(0.4888, 0.0001)) // 0.4888
} func Round(x, unit float64) float64 {
var rounded float64
if x > 0 {
rounded = float64(int64(x/unit+0.5)) * unit
} else {
rounded = float64(int64(x/unit-0.5)) * unit
} var precision int
for unit < 1 {
precision++
unit *= 10
} formatted, err := strconv.ParseFloat(fmt.Sprintf("%."+strconv.Itoa(precision)+"f", rounded), 64)
if err != nil {
return rounded
}
return formatted
}

确实获得了满意的精准度,但是其性能也非常客观,达到了 215ns/op,暂时看来如果追求精度,这个算法目前是比较完美的。

大道至简

很快我发现了另一个极简的算法,它的精度和速度都非常的高,实现还特别精简:

package main

import (
"fmt" "github.com/thinkeridea/go-extend/exmath"
) func main() {
f := 0.15807659924030304
fmt.Println(float64(int64(f*10000+0.5)) / 10000) // 0.1581
}

这并不通用,除非像以下这么包装:

func Round(x, unit float64) float64 {
return float64(int64(x*unit+0.5)) / unit
}

unit 参数和之前的概念不同了,保留一位小数 uint =10,只是整数 uint=1, 想对整数部分进行精度控制 uint=0.01 例如: Round(1555.15807659924030304, 0.01) = 1600Round(1555.15807659924030304, 1) = 1555Round(1555.15807659924030304, 10000) = 1555.1581

这似乎就是终极答案了吧,等等……

终极方案

上面的方法够简单,也够高效,但是 api 不太友好,第二个参数不够直观,带了一定的心智负担,其它语言都是传递保留多少位小数,例如 Round(1555.15807659924030304, 0) = 1555Round(1555.15807659924030304, 2) = 1555.16Round(1555.15807659924030304, -2) = 1600,这样的交互才符合人性啊。

别急我在 go-extend 开源了 exmath.Round,其算法符合通用语言 Round 实现,且遵循 Round half up 算法要求,其性能方面在 3.50ns/op, 具体可以参看调优exmath.Round算法, 具体代码如下:

//source: https://github.com/thinkeridea/go-extend/blob/main/exmath/round.go

package exmath

import (
"math"
) // Round 四舍五入,ROUND_HALF_UP 模式实现
// 返回将 val 根据指定精度 precision(十进制小数点后数字的数目)进行四舍五入的结果。precision 也可以是负数或零。
func Round(val float64, precision int) float64 {
p := math.Pow10(precision)
return math.Floor(val*p+0.5) / p
}

总结

Round 功能虽简单,但是受到 float 精度影响,仍然有很多人在四处寻找稳定高效的算法,参阅了大多数资料后精简出 exmath.Round 方法,期望对其他开发者有所帮助,至于其精度使用了大量的测试用例,没有超过 float 精度范围时并没有出现精度问题,未知问题等待社区检验,具体测试用例参见 round_test

转载:

本文作者: 戚银(thinkeridea

本文链接: https://blog.thinkeridea.com/202101/go/round.html

版权声明: 本博客所有文章除特别声明外,均采用 CC BY 4.0 CN协议 许可协议。转载请注明出处!

【Go】四舍五入在go语言中为何如此困难的更多相关文章

  1. C语言中内存分配那些事儿

    C程序的内存结构 C语言的之所以复杂,首先它的内存模型功不可没.不像某些那样的高级语言只需要在使用对象的时候,用new创建.所有之后的事情,你不需要操心.对于C语言,所有与内存相关的东西,都需要熟悉, ...

  2. C语言中最常用的三种输入输出函数scanf()、printf()、getchar()和putchar()

    本文给大家介绍C语言中最常用的三种输入输出函数scanf().printf().getchar()和putchar(). 一.scanf()函数格式化输入函数scanf()的功能是从键盘上输入数据,该 ...

  3. C语言中强制数据类型转换(转)

    原文地址不详 字符型变量的值实质上是一个8位的整数值,因此取值范围一般是-128-127,char型变量也可以加修饰符unsigned,则unsigned char 型变量的取值范围是0-255(有些 ...

  4. C语言中强制类型转换总结

    C语言中强制类型转换总结  ● 字符型变量的值实质上是一个8位的整数值,因此取值范围一般是-128-127,char型变量也可以加修饰符unsigned,则unsigned char 型变量的取值范围 ...

  5. JAVA语言中的修饰符

    JAVA语言中的修饰符 -----------------------------------------------01--------------------------------------- ...

  6. Java语言中的面向对象特性总结

    Java语言中的面向对象特性 (总结得不错) [课前思考]  1. 什么是对象?什么是类?什么是包?什么是接口?什么是内部类?  2. 面向对象编程的特性有哪三个?它们各自又有哪些特性?  3. 你知 ...

  7. python语言中的编码问题

    在编程的过程当中,常常会遇到莫名其妙的乱码问题.很多人选择出了问题直接在网上找答案,把别人的例子照搬过来,这是快速解决问题的一个好办法.然而,作为一个严谨求实的开发者,如果不从源头上彻底理解乱码产生的 ...

  8. 在C语言中利用PCRE实现正则表达式

    1. PCRE简介 2. 正则表达式定义 3. PCRE正则表达式的定义 4. PCRE的函数简介 5. 使用PCRE在C语言中实现正则表达式的解析 6. PCRE函数在C语言中的使用小例子 1. P ...

  9. C语言中函数声明实现的位置

    在学习C语言的时候我遇到了这么个事情,因为之前先学习的C#,在C#编译器中,函数的声明位置不会影响编译的结果,但是在C语言中却发生了错误 先看一段代码: #include <stdio.h> ...

随机推荐

  1. 一个使用xlwings操作excel数据优化60倍处理效率的案例

    ☞ ░ 前往老猿Python博文目录 ░ 一.引言 老猿在将自己的博文数据(包括url地址.标题和阅读数量)从博客中获取后,使用xlwings保存到excel对象时发现,不同的处理方法性能相差非常大. ...

  2. PyQt(Python+Qt)学习随笔:QDockWidget停靠窗相关的信号

    专栏:Python基础教程目录 专栏:使用PyQt开发图形界面Python应用 专栏:PyQt入门学习 老猿Python博文目录 QDockWidget的信号包括与属性变更相关的allowedArea ...

  3. PyQt(Python+Qt)学习随笔:在一个窗口点击按钮弹出另一个窗口的实现方法及注意事项

    在Qt Designer中定义了两个窗口,一个主窗口一个弹出窗口,需要实现在主窗口点击一个按钮时弹出弹出窗口. 经老猿验证: 1.弹窗的窗口类型无特殊要求,只要是QWidget等窗口部件就可以,也可以 ...

  4. 自动化测试架构设计 &&自动化持续集成测试任务实战[线性测试、模块驱动测试、数据驱动测试、关键字驱动测试]

    1 为什么设计自动化测试架构 1.1 企业现状分析 压力大:产品需求不明确,上线时间确定,压力山大. 混乱:未立项,开发时间已过半,前期无控制,后期无保障. 疲于应付:开发人员交付的文件质量差,测试跟 ...

  5. 赶紧收藏!王者级别的Java多线程技术笔记,我java小菜鸡愿奉你为地表最强!

    Java多线程技术概述 介绍多线程之前要介绍线程,介绍线程则离不开进程. 首先 , 进程 :是一个正在执行中的程序,每一个进程执行都有一个执行顺序,该顺序是一个执行路径,或者叫一个控制单元: 线程:就 ...

  6. springboot中使用h2数据库(内存模式)

    使用H2的优点,不需要装有服务端和客户端,在项目中包含一个jar即可,加上初始化的SQL就可以使用数据库了 在springboot中引入,我的版本是2.1.4,里面就包含有h2的版本控制 <!- ...

  7. Salesforce 系列(一):云服务和 Salesforce 理念简介

    本系列文章系笔者在 Salesforce 开发过程中的些许总结与心得,旨在记录自己的成长,以及为对 Salesforce 感兴趣的小伙伴提供一些帮助,如有疏漏,还望多多包涵 ~ 云服务 云服务,也称云 ...

  8. python程序的三种控制结构

    程序的三种控制结构 什么是控制结构? """ 程序有三种基本结构组成:顺序结构.分支结构.循环结构.任何程序都是由这三种基本结构组成. 顺序结构是程序按照线性顺序依次执行 ...

  9. Jmeter(6)命令行执行

    Jmeter执行方式有2种:GUI和非GUI模式 GUI:在Windows电脑上运行,图形化界面,可直接查看测试结果,但是消耗压力机资源较高 非GUI:通过命令行执行,无图形化界面,不方便查看测试结果 ...

  10. 三方登录微博url接口

    1.创建apps/oauth模块进行oauth认证 '''2.1 在apps文件夹下新建应用: oauth''' cd syl/apps python ../manage.py startapp oa ...