数据可视化实例(十三): 发散型文本 (matplotlib,pandas)
偏差 (Deviation)
https://datawhalechina.github.io/pms50/#/chapter11/chapter11
发散型文本 (Diverging Texts)
如果您想根据单个指标查看项目的变化情况,并可视化此差异的顺序和数量,那么散型条形图 (Diverging Bars) 是一个很好的工具。 它有助于快速区分数据中组的性能,并且非常直观,并且可以立即传达这一点。
导入所需要的库
import numpy as np # 导入numpy库
import pandas as pd # 导入pandas库
import matplotlib as mpl # 导入matplotlib库
import matplotlib.pyplot as plt
import seaborn as sns # 导入seaborn库
设定图像各种属性
large = 22; med = 16; small = 12 params = {'axes.titlesize': large, # 设置子图上的标题字体
'legend.fontsize': med, # 设置图例的字体
'figure.figsize': (16, 10), # 设置图像的画布
'axes.labelsize': med, # 设置标签的字体
'xtick.labelsize': med, # 设置x轴上的标尺的字体
'ytick.labelsize': med, # 设置整个画布的标题字体
'figure.titlesize': large}
plt.rcParams.update(params) # 更新默认属性
plt.style.use('seaborn-whitegrid') # 设定整体风格
sns.set_style("white") # 设定整体背景风格
程序代码
# step1:导入数据
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")
x = df.loc[:, 'mpg'] # 获取mpg这一列数据
# z-score 标准化(正太标准化):将数据按期属性(按列进行)减去其均值,并处以其方差。得到的结果是,对于每个属性/每列来说所有数据都聚集在0附近,方差为1。
df['mpg_z'] = (x - x.mean()) / x.std()
# 列表推导式
# 小于0__红色,大于0__绿色
df['colors'] = ['red' if x <0 else 'green' for x in df['mpg_z']] # 颜色标签
df.sort_values('mpg_z', inplace = True) # 对'mpg_z这一列数据进行排序
df.reset_index(inplace = True) # 对排序后的数据重置索引
# step2:绘制发散条形图
# 画布
plt.figure(figsize = (14, 10), # 画布尺寸_(14, 10)
dpi = 80) # 分辨率__80
# 发散型条形图
plt.hlines(df.index, # 将y下标作为绘制直线的位置
xmin = 0, # 每一行的开头
xmax = df.mpg_z) # 每一行的结尾
# 发散型文本图
for x, y, text in zip(df.mpg_z, df.index, df.mpg_z): # 使用zip() 函数用于将可迭代的对象作为参数
t = plt.text(x, # 文本位置的横坐标
y, # 文本位置的纵坐标
round(text, 2), # 对text保留2位小数(照指定的小数位数进行四舍五入运算的结果)
horizontalalignment = 'right' if x<0 else 'left', # 水平对齐参数
verticalalignment = 'center', # 垂直对齐参数
fontdict = {'color':'red' if x<0 else 'green', 'size':14} ) # 用于覆盖默认文本属性的字典(添加颜色和尺寸)
# step3:装饰图像
# y轴标签
plt.yticks(df.index, # 放置刻度的位置列表
df.cars, # 放置给定位置列表的标签列表
fontsize = 12) # 字体尺寸
# 设置图像标题
plt.title('Diverging Text Bars of Car Mileage', # 图像标题名称
fontdict={'size':20}) # 字体尺寸
# 设置网格线
plt.grid(linestyle = '--', # 网格线类型
alpha = 0.5) # 网格线透明度
# 设置当前x坐标轴的范围
plt.xlim(-2.5,
2.5)
plt.show() # 显示图像
数据可视化实例(十三): 发散型文本 (matplotlib,pandas)的更多相关文章
- 【Matplotlib】数据可视化实例分析
数据可视化实例分析 作者:白宁超 2017年7月19日09:09:07 摘要:数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息.但是,这并不就意味着数据可视化就一定因为要实现其功能用途而令 ...
- 数据可视化实例(十四):带标记的发散型棒棒糖图 (matplotlib,pandas)
偏差 (Deviation) 带标记的发散型棒棒糖图 (Diverging Lollipop Chart with Markers) 带标记的棒棒糖图通过强调您想要引起注意的任何重要数据点并在图表中适 ...
- seaborn 数据可视化(一)连续型变量可视化
一.综述 Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,图像也更加美观,本文基于seaborn官方API还有自己的一些理解. 1.1.样式控制: ...
- 数据可视化基础专题(四):Pandas基础(三) mysql导入与导出
转载(有添加.修改)作者:但盼风雨来_jc链接:https://www.jianshu.com/p/238a13995b2b來源:简书著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处 ...
- 数据可视化基础专题(八):Pandas基础(七) 数据清洗与预处理相关
1.数据概览 第一步当然是把缺失的数据找出来, Pandas 找缺失数据可以使用 info() 这个方法(这里选用的数据源还是前面一篇文章所使用的 Excel ,小编这里简单的随机删除掉几个数据) i ...
- 数据可视化实例(十二): 发散型条形图 (matplotlib,pandas)
https://datawhalechina.github.io/pms50/#/chapter10/chapter10 如果您想根据单个指标查看项目的变化情况,并可视化此差异的顺序和数量,那么散型条 ...
- Matplotlib数据可视化(3):文本与轴
在一幅图表中,文本.坐标轴和图像的是信息传递的核心,对着三者的设置是作图这最为关心的内容,在上一篇博客中虽然列举了一些设置方法,但没有进行深入介绍,本文以围绕如何对文本和坐标轴进行设置展开(对图像 ...
- 数据可视化实例(三): 散点图(pandas,matplotlib,numpy)
关联 (Correlation) 关联图表用于可视化2个或更多变量之间的关系. 也就是说,一个变量如何相对于另一个变化. 散点图(Scatter plot) 散点图是用于研究两个变量之间关系的经典的和 ...
- 数据可视化实例(十六):有序条形图(matplotlib,pandas)
排序 (Ranking) 棒棒糖图 (Lollipop Chart) 棒棒糖图表以一种视觉上令人愉悦的方式提供与有序条形图类似的目的. https://datawhalechina.github.io ...
随机推荐
- 深入理解 EF Core:EF Core 读取数据时发生了什么?
阅读本文大概需要 11 分钟. 原文:https://bit.ly/2UMiDLb 作者:Jon P Smith 翻译:王亮 声明:我翻译技术文章不是逐句翻译的,而是根据我自己的理解来表述的.其中可能 ...
- 基于docker-compose搭建gitlab
安装及配置 修改docker-compose文件 vim docker-compose.yml gitlab: image: 'gitlab/gitlab-ce:latest' restart: al ...
- equals与hashCode的区别
equals与hashCode的区别 1.类中的equals方法是一定要重写/覆盖(Override)的,因为要让它按照设计的需求来根据特征值判断等价性. 这里的特征值,就是String类型的name ...
- cb27a_c++_STL_算法_最小值和最大值
cb27a_c++_STL_算法_最小值和最大值min_element(b,e) b--begin(), e--end()min_element(b,e,op). op:函数,函数对象,一元谓词.ma ...
- Linux监控CPU,内存,磁盘I/O
简单讲讲Linux下监控 [CPU] 监控CPU,top命令能够实时监控系统的运行状态,并且可以按照CPU.内存和执行时间进行排序,同时top命令还可以通过交互式命令进行设定显示,通过top命令可以查 ...
- 【asp.net core 系列】- 11 Service层的实现样板
0.前言 在<asp.net core 系列>之实战系列中,我们在之前的篇幅中对项目有了一个大概的认知,也搭建了一个基础的项目骨架.那么就让我们继续完善这个骨架,让它更加丰满.这一篇,我将 ...
- 尚学堂 208.Annotation注解和内置注解
208.Annotation注解和内置注解 override:这个注释的作用是标识某一个方法是否覆盖了它的父类的方法deprecated:表示果某个类成员的提示中出现了个词,就表示这个并不建议使用这个 ...
- Distributed Runtime
上级:https://www.cnblogs.com/hackerxiaoyon/p/12747387.html Tasks and Operator Chains 任务和操作链 对于分布式执行器,f ...
- 【Spring】内嵌Tomcat&去Xml&调试Mvc
菜瓜:今天听到个名词“父子容器”,百度了一下,感觉概念有点空洞,这是什么核武器? 水稻:你说的是SpringMvc和Spring吧,其实只是一个概念而已,用来将两个容器做隔离,起到解耦的作用,其中子容 ...
- 一文说通MongoDB via Python操作
Python并不仅仅是一个做Machine Learning的语言. 说到Python,一般都会感觉它关联着ML,如果不是做ML开发,就会觉得离自己很远.而实际上,作为一门语言,Python在应用 ...