Almost All Divisors(求因子个数及思维)
---恢复内容开始---
We guessed some integer number xx. You are given a list of almost all its divisors. Almost all means that there are all divisors except 11and xx in the list.
Your task is to find the minimum possible integer xx that can be the guessed number, or say that the input data is contradictory and it is impossible to find such number.
You have to answer tt independent queries.
The first line of the input contains one integer tt (1≤t≤251≤t≤25) — the number of queries. Then tt queries follow.
The first line of the query contains one integer nn (1≤n≤3001≤n≤300) — the number of divisors in the list.
The second line of the query contains nn integers d1,d2,…,dnd1,d2,…,dn (2≤di≤1062≤di≤106), where didi is the ii-th divisor of the guessed number. It is guaranteed that all values didi are distinct.
For each query print the answer to it.
If the input data in the query is contradictory and it is impossible to find such number xx that the given list of divisors is the list of almost allits divisors, print -1. Otherwise print the minimum possible xx.
2
8
8 2 12 6 4 24 16 3
1
2
48
4
思路:求出因子个数,看是否这n个数是否包含这n个因子数,然后判断一下再判断一下这n个数是否是他的因子
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<vector>
#include<map>
#include<cmath>
const int maxn=1e5+;
typedef long long ll;
using namespace std;
ll count(ll n){
ll s=;
for(ll i=;i*i<=n;i++){
if(n%i==){
int a=;
while(n%i==){
n/=i;
a++;
}
s=s*(a+);
}
}
if(n>) s=s*;
return s;
}
ll a[maxn];
int main()
{
int T;
cin>>T;
int n;
while(T--)
{
scanf("%d",&n);
ll maxx=;
ll minn=;
ll x;
for(int t=;t<n;t++)
{
scanf("%lld",&a[t]);
maxx=max(a[t],maxx);
minn=min(a[t],minn);
}
ll ans=maxx*minn;
bool flag=false;
for(int t=;t<n;t++)
{
if(ans%a[t]!=)
{
flag=true;
}
}
if(count(ans)-==n&&flag==false)
printf("%lld\n",ans);
else
{
printf("-1\n");
} }
return ;
}
---恢复内容结束---
Almost All Divisors(求因子个数及思维)的更多相关文章
- Trailing Zeroes (I) LightOJ - 1028(求因子个数)
题意: 给出一个N 求N有多少个别的进制的数有后导零 解析: 对于一个别的进制的数要转化为10进制 (我们暂且只分析二进制就好啦) An * 2^(n-1) + An-1 * 2^(n-2) + `` ...
- POJ 2992 Divisors (求因子个数)
题意:给n和k,求组合C(n,k)的因子个数. 这道题,若一开始先预处理出C[i][j]的大小,再按普通方法枚举2~sqrt(C[i][j])来求解对应的因子个数,会TLE.所以得用别的方法. 在说方 ...
- LightOj1028 - Trailing Zeroes (I)---求因子个数
题目链接:http://lightoj.com/volume_showproblem.php?problem=1028 题意:给你一个数 n (1<=n<=10^12), 然后我们可以把它 ...
- Easy Number Challenge(暴力,求因子个数)
Easy Number Challenge Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I ...
- HDU-1492-The number of divisors(约数) about Humble Numbers -求因子总数+唯一分解定理的变形
A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, ...
- Divisors (求解组合数因子个数)【唯一分解定理】
Divisors 题目链接(点击) Your task in this problem is to determine the number of divisors of Cnk. Just for ...
- BZOJ3994:约数个数和(莫比乌斯反演:求[1,N]*[1,M]的矩阵的因子个数)
Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Outpu ...
- POJ-2992 Divisors---组合数求因子数目
题目链接: https://cn.vjudge.net/problem/POJ-2992 题目大意: 给出组合数Cnk,求出其因子个数,其中n,k不大于431,组合数的值在long long范围内 解 ...
- hdu 6069 Counting Divisors(求因子的个数)
Counting Divisors Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Oth ...
随机推荐
- Springboot中如何引入本地jar包,并通过maven把项目成功打包成jar包部署
最近尝试引入阿里云的短信验证码,阿里云的core sdk是maven就有的,但是短信相关的jar包却不是放在maven的,所以得引入本地的下载回来的jar包.本地开发直接引入,idea是可以直接跑调用 ...
- Go:内存管理与内存清理
Illustration created for "A Journey With Go", made from the original Go Gopher, created by ...
- 039_go语言中的排序
代码演示: package main import "fmt" import "sort" func main() { strs := []string{&qu ...
- EF框架 与 Dapper框架 调用分页存储过程
1. SqlServer创建存储过程: --创建存储过程 create proc sp_Show ( @index int, --当前页 @size int, --每页大小 @totalcount i ...
- C#LeetCode刷题之#110-平衡二叉树(Balanced Binary Tree)
问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/4074 访问. 给定一个二叉树,判断它是否是高度平衡的二叉树. 本 ...
- 极简 Node.js 入门 - 2.3 process
极简 Node.js 入门系列教程:https://www.yuque.com/sunluyong/node 本文更佳阅读体验:https://www.yuque.com/sunluyong/node ...
- flask_restful实现文件下载功能
环境:前后端完全分离,后端flask_restful,前端vue from flask_restful import reqparse, Resource from flask import send ...
- Django context must be a dict ranther than Context
1.1 错误描述 TypeError at /time/ context must be a dict rather than Context. Request Method: GET Request ...
- N46期第一周作业
1.解释drwx rwx rwx中每个字符表⽰什么? d : 表示目录文件 ①rwx表示UID的读写执行权限 ②rwx表示GID的读写执行权限 ③rwx表示other的读写执行权限 2.li ...
- Android 在代码中修改TextView的DrawableRight等方向上的图片
在XML文件中可以对TextView进行设置: android:drawableTop="@drawable/XXX" android:drawableBottom="@ ...