Link

题目大意:一段区间的贡献是\(ax^2+bx+c,x=\sum v\),求一个划分让总区间的价值最大。分段必须连续。

\(\text{Solution:}\)

设计\(dp[i]\)表示前\(i\)个人的最佳划分价值。那么有转移:

\[dp[i]=\max_{j<i}dp[j]+a(\sum_{j+1\to i}v)^2+b(\sum_{j+1\to i}v)+c
\]

显然\(n^2\)的\(dp.\)

搞一下柿子,令\(sum_i\)表示\([1,i]\)的和。

\[dp[i]=dp[j]+a(sum[i]-sum[j])^2+b(sum[i]-sum[j])+c
\]
\[dp[i]=dp[j]+a(sum[i]^2+sum[j]^2-2sum[i]sum[j])+bsum[i]-bsum[j]+c
\]
\[dp[i]=dp[j]+asum[i]^2+asum[j]^2-2asum[i]sum[j]+bsum[i]-bsum[j]+c
\]
\[dp[j]+asum[j]^2-bsum[j]=2asum[i]sum[j]+dp[i]-c-bsum[i]-asum[i]^2
\]

此时\(y=dp[j]+asum[j]^2-bsum[j],k=2asum[i],x=sum[j],b=dp[i]-c-bsum[i]-asum[i]^2\)最大化截距维护上凸壳即可。

#include<bits/stdc++.h>
using namespace std;
#define int long long
int n,A,B,C,sum[2000010],v[2000010];
int tail,head,q[2000010],dp[2000010];
int Y(int x){return dp[x]+A*sum[x]*sum[x]-B*sum[x];}
int X(int x){return sum[x];}
long double slope(int x,int y){return (long double)(Y(y)-Y(x))/(X(y)-X(x));}
int cost(int i,int j){return A*(sum[i]-sum[j])*(sum[i]-sum[j])+B*(sum[i]-sum[j])+C;}
signed main(){
/*
dp[j]+Asum[j]^2-Bsum[j]=2Asum[i]sum[j]+dp[i]-Asum[i]^2-Bsum[i]-C
y=dp[j]+Asum[j]^2-Bsum[j],k=2Asum[i],x=sum[j],b=dp[i]-Asum[i]^2-Bsum[i]-C
*/
scanf("%lld%lld%lld%lld",&n,&A,&B,&C);
for(int i=1;i<=n;++i)scanf("%lld",&v[i]),sum[i]=sum[i-1]+v[i];
head=tail=1;q[head]=0;
for(int i=1;i<=n;++i){
while(head<tail&&slope(q[head],q[head+1])>=2.0*A*sum[i])head++;
dp[i]=dp[q[head]]+cost(i,q[head]);
while(head<tail&&slope(q[tail-1],q[tail])<=slope(q[tail-1],i))tail--;
q[++tail]=i;
}
printf("%lld\n",dp[n]);
return 0;
}

值得一提的是,原本在写进队出队判断的时候带上等于是错的,后来发现是精度被卡了。所以尽量用\(\text{long double.}\)

【题解】[APIO2010]特别行动队的更多相关文章

  1. 题解-APIO2010 特别行动队

    题目 洛谷 & bzoj 简要题意:给定一个长为\(n\)的序列\(\{s_i\}\)与常数\(a,b,c\),序列的一个连续子段\(s_i\)到\(s_j\)的贡献为\(at^2+bt+c\ ...

  2. 【bzoj1911】[Apio2010]特别行动队

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 4048  Solved: 1913[Submit][Statu ...

  3. [洛谷P3628] [APIO2010]特别行动队

    洛谷题目链接:[APIO2010]特别行动队 题目描述 你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 \(n\) 编号,要将他们拆分 成若干特别行动队调入战场.出于默契的考虑,同一支特别行动 ...

  4. BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 4142  Solved: 1964[Submit][Statu ...

  5. 【BZOJ 1191】 [Apio2010]特别行动队 (斜率优化)

    dsy1911: [Apio2010]特别行动队 [题目描述] 有n个数,分成连续的若干段,每段的分数为a*x^2+b*x+c(a,b,c是给出的常数),其中x为该段的各个数的和.求如何分才能使得各个 ...

  6. bzoj 1911 [Apio2010]特别行动队(斜率优化+DP)

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 3191  Solved: 1450[Submit][Statu ...

  7. BZOJ 1911: [Apio2010]特别行动队( dp + 斜率优化 )

    sum为战斗力的前缀和 dp(x) = max( dp(p)+A*(sumx-sump)2+B*(sumx-sump)+C )(0≤p<x) 然后斜率优化...懒得写下去了... ------- ...

  8. bzoj1911[Apio2010]特别行动队 斜率优化dp

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 5057  Solved: 2492[Submit][Statu ...

  9. P3628 [APIO2010]特别行动队(斜率优化dp)

    P3628 [APIO2010]特别行动队 设$s[i]$为战斗力前缀和 显然我们可以列出方程 $f[i]=f[j]+a*(s[i]-s[j])^{2}+b*(s[i]-s[j])+c$ $f[i]= ...

  10. [luogu P3628] [APIO2010]特别行动队

    [luogu P3628] [APIO2010]特别行动队 题目描述 你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 n 编号,要将他们拆分 成若干特别行动队调入战场.出于默契的考虑,同一支特 ...

随机推荐

  1. 【Spring注解驱动开发】二狗子让我给他讲讲@EnableAspectJAutoProxy注解

    写在前面 最近,二狗子入职了新公司,新入职的那几天确实有点飘.不过慢慢的,他发现他身边的人各个身怀绝技啊,有Spring源码的贡献者,有Dubbo源码的贡献者,有MyBatis源码的贡献者,还有研究A ...

  2. 使用DataStax Java驱动程序的最佳实践

    引言 如果您想开始建立自己的基于Cassandra的Java程序,欢迎! 也许您已经参加过我们精彩的DataStax Academy课程或开发者大会,又或者仔细阅读过Cassandra Java驱动的 ...

  3. observeParents的使用

    observeParents参数 是布尔类型  默认false 在tab切换选项中有轮播图,切换后轮播图就不播了,并且显示也出现了问题,就可以使用observeParents 用法为 <scri ...

  4. 你不知道的JavaScript笔记----对象

    对象: 1.定义对象属性 属性描述符(也称为:数据描述符) Object.defineProperty(Object,PropertyName,{ value: 6, writable: true, ...

  5. 剑指 Offer 48. 最长不含重复字符的子字符串

    题目描述 请从字符串中找出一个最长的不包含重复字符的子字符串,计算该最长子字符串的长度. 示例1: 输入: "abcabcbb" 输出: 3 解释: 因为无重复字符的最长子串是 & ...

  6. leetcode刷题-43字符串相乘

    题目 给定两个以字符串形式表示的非负整数 num1 和 num2,返回 num1 和 num2 的乘积,它们的乘积也表示为字符串形式. 思路 字符串转数字:从字符串第一位开始取,每次取出的值转换为数字 ...

  7. Fastbin attack——Double Free

    ptmalloc ptmalloc的基本思路是将堆上的内存区域划分为多个chunk,在分配/回收内存时,对chunk进行分割.回收等操作.在32位系统下,chunk头的大小为8 Bytes,且每个ch ...

  8. HTML常用实体字符参考手册

    最常用的字符实体 显示结果 描述 实体名称 实体编号   空格     < 小于号 < < > 大于号 > > & 和号 & & " ...

  9. Oracle自动存储管理ASM

    参考资料: https://docs.oracle.com/cd/B19306_01/server.102/b14231/storeman.htm#ADMIN036 什么是ASM? ASM是Autom ...

  10. 深入理解xLua热更新原理

    热更新简介 热更新是指在不需要重新编译打包游戏的情况下,在线更新游戏中的一些非核心代码和资源,比如活动运营和打补丁.热更新分为资源热更新和代码热更新两种,代码热更新实际上也是把代码当成资源的一种热更新 ...