参考红宝书

题目链接

对除 1 号点顶点外的点集,求一次最小生成森林,对于最小生成森林的联通分量,选择最短的一条边与 1 号点相连。设此时 1 号点的度为 \(k_0\),如果 \(k_0\lt L\) 则无解 (L为1号顶点的规定度)

然后通过可行交换来增加 1 号点的度,每次尝试加入一条和 1 号点相连的边,然后删去所形成的环上面的最长边。

此题点数为 5000,对于每次交换,可以用树形DP求出所有点到 1 号点的最长边。每次选择增量最小的边去交换,直到 \(k_0\) 达到 L

在实现中的一些困难:

  1. 答案要求构成生成树的边序号,所以加边时要保留原边序号信息
  2. 树形DP要找到每个点到 根 的最长路大小,以及对应边的序号
  3. 如果一个点与根直接相连,可以把这个边序号保留下来(下面代码中用path数组保留),方便之后做替换用
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
#define dbg(x...) do { cout << "\033[32;1m" << #x <<" -> "; err(x); } while (0)
void err() { cout << "\033[39;0m" << endl; }
template<class T, class... Ts> void err(const T& arg,const Ts&... args) { cout << arg << " "; err(args...); }
const int N = 5000 + 5;
const int M = 200010;
int head[N], ver[M], nxt[M], edge[M];
int fa[N], mark[M], best[N], cand[N];
int path[N];
int n, m, k, tot;
struct Edge{
int x, y, z;
int id;
Edge(int a=0,int b=0, int c=0, int d=0):x(a),y(b),z(c),id(d){}
bool operator <(Edge b){
return z < b.z;
}
}e[M];
void add(int x, int y, int z, int id){
ver[id] = y, edge[id] = z, nxt[id] = head[x], head[x] = id;
}
void addEdge(int i){
add(e[i].x, e[i].y, e[i].z, i*2);
add(e[i].y, e[i].x, e[i].z, i*2+1);
}
int find(int x){return x == fa[x] ? x : fa[x] = find(fa[x]);}
void dfs(int x, int fat){
for(int i=head[x];i;i=nxt[i]){
if(!mark[i>>1] || ver[i] == fat) continue;
int y = ver[i];
if(x == 1){// 从根出发的边,不能被替换
best[y] = -inf;
} else {
best[y] = edge[i], cand[y] = i >> 1; // 边的序号其实是 i/2
if(best[y] < best[x]){
best[y] = best[x];
cand[y] = cand[x];
}
}
dfs(y, x);
}
}
bool solve(){
sort(e + 1, e + 1 + m);
for(int i=1;i<=n;i++) fa[i] = i;
for(int i=1;i<=m;i++){
int x = e[i].x, y = e[i].y;
if(x == 1 || find(x) == find(y)) continue;
mark[e[i].id] = 1;
fa[find(x)] = find(y);
}
//按照id排序,便于之后处理
sort(e + 1, e + 1 + m, [](Edge a, Edge b){return a.id < b.id;});
int component = 0;//连通块个数
for(int i=2;i<=n;i++){
if(find(i) == i){
component ++;
best[i] = inf;
}
}
if(component > k) return false;
for(int i=1;i<=m;i++){
if(e[i].x != 1) continue;
path[e[i].y] = i;
int rt = find(e[i].y);
if(e[i].z < best[rt]){
best[rt] = e[i].z;
cand[rt] = i;
}
}
for(int i=2;i<=n;i++){
if(find(i) != i) continue;
if(best[i] == inf) return false;
mark[cand[i]] = 1;
}
for(int i=1;i<=m;i++){
if(mark[i]) addEdge(i);
}
while(component < k){
dfs(1, 0); //树形DP
int mx = inf, tcand = 0;
for(int i=2;i<=n;i++){
if(path[i] == 0 || best[i] == -inf) continue;
if(e[path[i]].z - best[i] < mx){
mx = e[path[i]].z - best[i];
tcand = i;
}
}
if(mx == inf) return false;
mark[cand[tcand]] = 0;
mark[path[tcand]] = 1;
addEdge(path[tcand]);
component ++;
}
printf("%d\n", n-1);
for(int i=1;i<=m;i++){
if(mark[i]) printf("%d ", i);
}
return true;
}
int main(){
scanf("%d%d%d", &n, &m, &k);
for(int i=1;i<=m;i++){
int x, y, z;scanf("%d%d%d", &x, &y, &z);
if(x > y) swap(x, y);
e[i] = Edge(x, y, z, i);
}
if(!solve()) puts("-1");
return 0;
}

CF-125E MST Company (单度限制最小生成树)的更多相关文章

  1. CodeForces 125E MST Company

    E. MST Company time limit per test 8 seconds memory limit per test 256 megabytes input standard inpu ...

  2. CODEFORCES 125E MST Company 巧用Kruskal算法

    题意:给定一个带权边无向图,求最小生成树,且满足第一个节点的度为固定的k 无解则输出-1 数据规模: 节点数n和限制k<=5000 边数m<=10^5 时限8sec 思路: 首先时限比较宽 ...

  3. 【CF125E】MST Company(凸优化,最小生成树)

    [CF125E]MST Company(凸优化,最小生成树) 题面 洛谷 CF 题解 第一眼看见就给人丽洁姐那道\(tree\)一样的感觉. 那么二分一个权值,加给所有有一个端点是\(1\)的边, 然 ...

  4. luogu CF125E MST Company wqs二分 构造

    LINK:CF125E MST Company 难点在于构造 前面说到了求最小值 可以二分出斜率k然后进行\(Kruskal\) 然后可以得到最小值.\(mx\)为值域. 得到最小值之后还有一个构造问 ...

  5. 【AtCoder3611】Tree MST(点分治,最小生成树)

    [AtCoder3611]Tree MST(点分治,最小生成树) 题面 AtCoder 洛谷 给定一棵\(n\)个节点的树,现有有一张完全图,两点\(x,y\)之间的边长为\(w[x]+w[y]+di ...

  6. CF F. MST Unification (最小生成树避圈法)

    题意 给一个无向加权联通图,没有重边和环.在这个图中可能存在多个最小生成树(MST),你可以进行以下操作:选择某条边使其权值加一,使得MST权值不变且唯一.求最少的操作次数. 分系:首先我们先要知道为 ...

  7. 度限制最小生成树 POJ 1639 贪心+DFS+prim

    很好的解题报告: http://blog.csdn.net/new_c_yuer/article/details/6365689 注意两点: 1.预处理环中权值最大的边···· 2.可以把去掉度限制后 ...

  8. POJ 1679 The Unique MST (次小生成树 判断最小生成树是否唯一)

    题目链接 Description Given a connected undirected graph, tell if its minimum spanning tree is unique. De ...

  9. Solution -「CF 1025G」Company Acquisitions

    \(\mathcal{Description}\)   Link.   \(n\) 个公司,每个公司可能独立或者附属于另一个公司.初始时,每个公司附属于 \(a_i\)(\(a_i=-1\) 表示该公 ...

随机推荐

  1. 使用 Admission Webhook 机制实现多集群资源配额控制

    1 要解决的问题 集群分配给多个用户使用时,需要使用配额以限制用户的资源使用,包括 CPU 核数.内存大小.GPU 卡数等,以防止资源被某些用户耗尽,造成不公平的资源分配. 大多数情况下,集群原生的 ...

  2. 免费、开源的基于tp5的快速开发框架

    HisiPHP 系统官网:https://www.hisiphp.com/ 后台体验:http://v2.demo.hisiphp.com/admin.php/system/publics/index ...

  3. Go GRPC 入门(二)

    前言 最近较忙,其实准备一篇搞定的 中途有事,只能隔了一天再写 正文 pb.go 需要注意的是,在本个 demo 中,客户端与服务端都是 Golang,所以在客户端与服务端都公用一个 pb.go 模板 ...

  4. SIGGRAPH Asia 2020 电脑动画节(CAF)获奖短片出炉!

    电脑动画节(CAF) 是SIGGRAPH Asia盛会最受瞩目的环节之一.2020年12月15日,SIGGRAPH Asia 2020虚拟线上会议正式宣布了电脑动画节的三部获奖短片:最佳作品奖< ...

  5. C++ 中的 inline 详解

    inline:是一个关键词,放在一个函数前面,说明这个函数是inline函数. inline函数是什么?inline有什么作用? 为了解答这个问题,我们首先要知道编译器是如何为我们工作的. 先看一段代 ...

  6. Tomcat-8.5.23 基于域名和端口的虚拟主机

    下载tomcat yum install java -y cd /opt/ wget http://mirror.bit.edu.cn/apache/tomcat/tomcat-8/v8.5.23/b ...

  7. 基于B/S架构的在线考试系统的设计与实现

    前言 这个是我的Web课程设计,用到的主要是JSP技术并使用了大量JSTL标签,所有代码已经上传到了我的Github仓库里,地址:https://github.com/quanbisen/online ...

  8. wpf 在不同DPI下如何在DrawingVisual中画出清晰的图形

    环境Win10 VS2017 .Net Framework4.7.1   本文仅讨论在DrawingVisual中进行的画图.   WPF单位,系统DPI,显示器DPI三者的定义及关系 WPF单位:一 ...

  9. linux下的命令自动补齐增强

    linux 7 下 安装 bash-completion 可以实现命令的参数的自动补齐

  10. 关于阿里云服务器安装了Apache开放80端口访问不了网页

    先用netstat -tlunp查看80端口是否打开,再关闭服务器的防火墙,可以用 systemctl status firewalld 查看防火墙状态  systemctl stop firewal ...