2019牛客暑期多校训练营(第一场)E ABBA (DP/卡特兰数)
知识点:卡特兰数/动态规划
法一:动态规划
由题意易知字符串的任何一个前缀都满足\(cnt(A) - cnt(B) \le n , cnt(B)-cnt(A)\le m\)
\(d[i][j]\) 表示前\(i\) 个字符,有 \(j\) 个\(A\) ,有\(i-j\) 个\(B\) 的方案数
- \(d[0][0] = 1,d[2*n+2*m][n+m] 为答案\)
- 当\(j-(i-j)\le n,(i-j)-j\le m\) 时,\(d[i][j] = d[i-1][j] + d[i-1][j-1]\)
#include <bits/stdc++.h>
using namespace std;
const int mod = 1e9+7;
typedef long long ll;
int n,m;
ll d[4010][2010];
int main(){
while(~scanf("%d%d",&n,&m)){
d[0][0] = 1;
for(int i=1;i<=2*(n+m);i++){
for(int j=0;j<=i && j <= (n+m);j++){
int a = j;
int b = i - j;
if(a - b > n || b - a > m)continue;
d[i][j] = (d[i-1][j] + d[i-1][j-1])%mod;
}
}
printf("%lld\n",d[2*(n+m)][(n+m)]);
for(int i=1;i<=2*(n+m);i++){
for(int j=0;j<=i && j <=(n+m);j++)
d[i][j] = 0;
}
}
return 0;
}
法二:组合数学
设\(x\) 为A的个数,\(y\)为B的个数,那么由\((0,0)\rightarrow (n+m,n+m)\)的路径上面必须满足\(x-y\le n,y-x\le m\) 两个条件。
在经典的卡特兰数路径计数问题中就有提到,详情请参考:https://oi-wiki.org/math/catalan/
将上面两个限制放在图中就是两个直线,然后求起点到终点的非降路径方案数(非降的意思是x和y不能变小),先考虑偏上的那条线(下面同理可得),如果我们有一条路径越过了\(y=x+m\) 这条线,那么该路径上面一定会有一个点在\(y=x+m+1\)这条线上。
从上图中不难看出来,这样的路径等效于从\((-m-1,m+1)\)到\((n+m,n+m)\) 的路径,因为\((0,0)与(-m-1,m+1)关于y=x+m+1 对称\)。
又
- \((0,0)\rightarrow (n+m,n+m)\) 的所有非降路径数为\(C_{2n+2m}^{n+m}\)
- \((-m-1,m+1)\rightarrow (n+m,n+m) 的所有非降路径数为\)C_{2n+2m}^{n-1}$
- \((n+1,-n-1)\rightarrow (n+m,n+m)\) 的所有非降路径数位\(C_{2n+2m}^{m-1}\)
所以总答案为\(C_{2n+2m}^{n+m}-C_{2n+2m}^{n-1}-C_{2n+2m}^{m-1}\)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 10010;
const int p = 1e9+7;
ll jc[N],inv[N];
int n,m;
ll ksm(ll a,ll b){
ll res = 1;
for(;b;b >>= 1){
if(b & 1)res = res * a % p;
a = a * a % p;
}
return res;
}
ll C(int a,int b){
return jc[a] * inv[b] % p * inv[a-b] % p;
}
int main(){
jc[0] = inv[0] = 1;
for(int i=1;i<=4000;i++)jc[i] = jc[i-1] * i % p,inv[i] = ksm(jc[i],p-2);
while(~scanf("%d%d",&n,&m)){
int s = 2*(n+m);
printf("%lld\n",(C(s,s/2) - (C(s,n-1) + C(s,m-1))%p + p) % p);
}
return 0;
}
2019牛客暑期多校训练营(第一场)E ABBA (DP/卡特兰数)的更多相关文章
- 2019牛客暑期多校训练营(第二场) H-Second Large Rectangle(单调栈)
题意:给出由01组成的矩阵,求求全是1的次大子矩阵. 思路: 单调栈 全是1的最大子矩阵的变形,不能直接把所有的面积存起来然后排序取第二大的,因为次大子矩阵可能在最大子矩阵里面,比如: 1 0 0 1 ...
- 2019牛客暑期多校训练营(第九场) D Knapsack Cryptosystem
题目 题意: 给你n(最大36)个数,让你从这n个数里面找出来一些数,使这些数的和等于s(题目输入),用到的数输出1,没有用到的数输出0 例如:3 4 2 3 4 输出:0 0 1 题解: 认真想一 ...
- 2019牛客暑期多校训练营(第五场)G - subsequeue 1 (一题我真的不会的题)
layout: post title: 2019牛客暑期多校训练营(第五场)G - subsequeue 1 (一题我真的不会的题) author: "luowentaoaa" c ...
- 2019牛客暑期多校训练营(第一场)A Equivalent Prefixes(单调栈/二分+分治)
链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 Two arrays u and v each with m distinct elements ...
- 2019牛客暑期多校训练营(第一场)A题【单调栈】(补题)
链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 题目描述 Two arrays u and v each with m distinct elem ...
- 2019牛客暑期多校训练营(第一场) B Integration (数学)
链接:https://ac.nowcoder.com/acm/contest/881/B 来源:牛客网 Integration 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 5242 ...
- 2019牛客暑期多校训练营(第一场) A Equivalent Prefixes ( st 表 + 二分+分治)
链接:https://ac.nowcoder.com/acm/contest/881/A 来源:牛客网 Equivalent Prefixes 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/ ...
- 2019牛客暑期多校训练营(第二场)F.Partition problem
链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...
- 2019牛客暑期多校训练营(第九场)A:Power of Fibonacci(斐波拉契幂次和)
题意:求Σfi^m%p. zoj上p是1e9+7,牛客是1e9: 对于这两个,分别有不同的做法. 前者利用公式,公式里面有sqrt(5),我们只需要二次剩余求即可. 后者mod=1e9,5才 ...
- 2019牛客暑期多校训练营(第八场)E.Explorer
链接:https://ac.nowcoder.com/acm/contest/888/E来源:牛客网 Gromah and LZR have entered the fifth level. Unli ...
随机推荐
- Study_way
一.Study 学习通Java基础视频.语法 开源中国 (Git)版本控制 读懂程序.源代码 相关资源 百度网盘 程序:方法(数学) 二.参数传递 基本数据的传参:虚参改变影响实参 引用数据的传参:数 ...
- [从源码学设计]蚂蚁金服SOFARegistry 之 ChangeNotifier
[从源码学设计]蚂蚁金服SOFARegistry 之 ChangeNotifier 目录 [从源码学设计]蚂蚁金服SOFARegistry 之 ChangeNotifier 0x00 摘要 0x01 ...
- python学习笔记 | 递归思想
1.引子 大师 L. Peter Deutsch 说过: To Iterate is Human, to Recurse, Divine. 中文译为:人理解迭代,神理解递归 2.什么是递归 简单理解: ...
- 那些最全面的Windows10安装pytorch踩过的坑以及如何应用
那些最全面的Windows10安装pytorch踩过的坑以及如何应用 一.pytorch简介 2017年1月,由Facebook人工智能研究院(FAIR)基于Torch推出了PyTorch.它是一个基 ...
- (二)数据源处理2-xlrd操作excel
import xlrd3workbook = xlrd3.open_workbook('test_data.xlsx')sheet =workbook.sheet_by_name('Sheet1')p ...
- MyBatis初级实战之三:springboot集成druid
OpenWrite版: 欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kuber ...
- 基础Markdown语法
Markdown语法 1.标题 //标题语法 # 一级标题 ## 二级标题 ### 三级标题 #### 四级标题 ##### 五级标题 ###### 六级标题 一级标题 二级标题 三级标题 四级标题 ...
- kubernets之Deployment资源
一 声明式的升级应用 1.1 回顾一下kubernets集群里面部署一个应用的形态应该是什么样子的,通过一副简单的图来描述一下 通过RC或者RS里面的模板创建了三个pod,之后通过一个servci ...
- bash shell数组使用总结
本文为原创博文,转发请注明原创链接:https://www.cnblogs.com/dingbj/p/10090583.html 数组的概念就不多说了,大家都懂! shell数组分为索引数组和关联数 ...
- SAP轻松访问会话管理器等设置
对于SAP的登陆后初始界面,是有一个配置表,可以进行设置的,例如隐藏SAP的标准菜单,设置轻松访问页面右边的图片内容等等这一切的设置都可以通过维护SSM_CUST表来实现可以通过SM30来维护内容,该 ...