仍然是两年前的笔记

1. prepare-reference

如果用RSEM对比对后的bam进行转录本定量,则在比对过程中要确保比对用到的索引是由rsem-prepare-reference产生的。

~/software/rsem/rsem-prepare-reference \
--transcript-to-gene-map ~/project/RNA-seq/ref_cds/gene_transcript.txt \ #作用是在后面的定量结果文件中,添加gene名称, 转录本名称两列,该文件每一行都是gene_id\ttranscript_id的形式,eg: cluster_11236 cluster_11236.1
--bowtie2 \ #RSEM可调用bowtie, bowtie2, STAR三种比对工具;这里选用bowtie2
~/project/RNA-seq/ref_cds/HC_cds_and_8sample_clustercds.fa \
~/project/RNA-seq/ref_cds/cds.byrsem

可以看到,单纯用bowtie2建的索引和rsem调用bowtie2建的索引是不一样的。

2. calculate-expression

用法分为两类,分别是从fa/fq得到表达矩阵,和从sam/bam得到表达矩阵(仍然要求是比对到rsem-prepare-reference生成的索引)。以单端的fq数据为例。

rsem-calculate-expression [options] upstream_read_file(s) reference_name sample_name
rsem-calculate-expression [options] --paired-end upstream_read_file(s) downstream_read_file(s) reference_name sample_name
rsem-calculate-expression [options] --sam/--bam [--paired-end] input reference_name sample_name
cat ~/project/RNA-seq/dir.txt | while read id
do
~/software/rsem/rsem-calculate-expression -p 8 --bowtie2 \
~/project/data/RNA-seq/${id}.fastq.gz \
~/project/RNA-seq/ref_cds/cds.byrsem \
--samtools-sort-mem 2G --fragment-length-mean 50 \ # 单端数据建议使用--fragment-length-mean和--fragment-length-sd
~/project/RNA-seq/map/${id}.rsem
done

完成之后得到这些文件,其中,rsem.genes.results和rsem.isoforms.results分别表示gene水平和转录本水平的定量结果。每一列含义:

less rsem.genes.results|head -n 1
gene_id transcript_id(s) length effective_length expected_count TPM FPKM
less rsem.isoforms.results|head -n 1
transcript_id gene_id length effective_length expected_count TPM FPKM IsoPct

后面用EBseq检验差异基因/转录本时,会使用到这两个文件。

3. Differential Expression Analysis using EBSeq

下面以gene水平差异分析为例。

3.1 generate-data-matrix

这一步提取上一步得到的每个样本定量结果文件中的expected_count列,组成数据矩阵。

~/software/rsem/rsem-generate-data-matrix \
SRR1.rsem.genes.results SRR2.rsem.genes.results \
SRR3.rsem.genes.results SRR4.rsem.genes.results \
SRR5.rsem.genes.results SRR6.rsem.genes.results \
SRR7.rsem.genes.results SRR8.rsem.genes.results \
> ~/project/RNA-seq/count/GeneMat.txt

3.2 run-ebseq

调用EBseq进行检验

~/software/rsem/rsem-run-ebseq \
GeneMat.txt 2,2,2,2 GeneMat.results #2,2,2,2表示4个condition, 每个condition有两个重复;顺序要和3.1中输入文件表示的condition的顺序一致 #会得到三个文件
GeneMat.results.condmeans GeneMat.results GeneMat.results.pattern #GeneMat.results.pattern
"C1" "C2" "C3" "C4"
"Pattern1" 1 1 1 1
"Pattern2" 1 1 1 2
"Pattern3" 1 1 2 1
"Pattern4" 1 1 2 2
"Pattern5" 1 2 1 1
"Pattern6" 1 2 1 2
"Pattern7" 1 2 2 1
"Pattern8" 1 2 2 2
"Pattern9" 1 1 2 3
"Pattern10" 1 2 1 3
"Pattern11" 1 2 2 3
"Pattern12" 1 2 3 1
"Pattern13" 1 2 3 2
"Pattern14" 1 2 3 3
"Pattern15" 1 2 3 4
#以Pattern14为例,1 2 3 3表示某基因表达:C1与C2不同,C3与C4相同
#四种condition如果有基因表达存在差异,就这些情况了 #GeneMat.results
#第一列是各个基因名称,接着15列是该基因符合该种Parttern的概率
#"MAP"为该基因最可能的模式;"PPDE":posterior probability of being differentially expressed,越大越好
"Pattern1" "Pattern2" "Pattern3" "Pattern4" "Pattern5" "Pattern6" "Pattern7" "Pattern8" "Pattern9" "Pattern10" "Pattern11" "Pattern12" "Pattern13" "Pattern14" "Pattern15" "MAP" "PPDE" #GeneMat.results.condmeans
#为每个样本合并重复之后的定量结果,如下图,这个结果可以用来控制fold change

3.3 control_fdr

控制FDR(错误发现率)来挑选差异基因

~/software/rsem/rsem-control-fdr \
GeneMat.results 0.05 GeneMat.de.txt

将GeneMat.results文件中,PPDE大于0.95的记录提取出来

因水平有限,有错误的地方,欢迎批评指正!

使用RSEM进行转录组测序的差异表达分析的更多相关文章

  1. 转录组差异表达分析工具Ballgown

    Ballgown是分析转录组差异表达的R包. 软件安装: 运行R, source(“http://bioconductor.org/biocLite.R”) biocLite(“ballgown”) ...

  2. 单细胞转录组测序数据的可变剪接(alternative splicing)分析方法总结

    可变剪接(alternative splicing),在真核生物中是一种非常基本的生物学事件.即基因转录后,先产生初始RNA或称作RNA前体,然后再通过可变剪接方式,选择性的把不同的外显子进行重连,从 ...

  3. 差异表达分析之FDR

    差异表达分析之FDR 随着测序成本的不断降低,转录组测序分析已逐渐成为一种很常用的分析手段.但对于转录组分析当中的一些概念,很多人还不是很清楚.今天,小编就来谈谈在转录组分析中,经常会遇到的一个概念F ...

  4. Differential expression analysis for paired RNA-seq data 成对RNA-seq数据的差异表达分析

    Differential expression analysis for paired RNA-seq data 抽象背景:RNA-Seq技术通过产生序列读数并在不同生物条件下计数其频率来测量转录本丰 ...

  5. RNA-Seq differential expression analysis: An extended review and a software tool RNA-Seq差异表达分析: 扩展评论和软件工具

    RNA-Seq differential expression analysis: An extended review and a software tool   RNA-Seq差异表达分析: 扩展 ...

  6. 表达谱(DGE)测序与转录组测序的差别

    DGE-seq和普通的transcriptomic profiling相比较有什么不同,有什么特点? DGE就是用酶将mRNA切断,只使用靠近poly A的一小段RNA去测序. #1 由于不是测定mR ...

  7. 单细胞转录组测序技术(scRNA-seq)及细胞分离技术分类汇总

    单细胞测序流程(http://learn.gencore.bio.nyu.edu) 在过去的十多年里,高通量测序技术被广泛应用于生物和医学的各种领域,极大促进了相关的研究和应用.其中转录组测序(RNA ...

  8. 转录组测序(RNA-seq)技术

        转录组是某个物种或者特定细胞类型产生的所有转录本的集合.转录组研究能够从整体水 平研究基因功能以及基因结构,揭示特定生物学过程以及疾病发生过程中的分子机理,已广泛应 用于基础研究.临床诊断和药 ...

  9. 转录组分析综述A survey of best practices for RNA-seq data analysis

    转录组分析综述 转录组 文献解读 Trinity cufflinks 转录组研究综述文章解读 今天介绍下小编最近阅读的关于RNA-seq分析的文章,文章发在Genome Biology 上的A sur ...

随机推荐

  1. Ajax(简介、基础操作、计算器,登录验证)

    Ajax简介 Ajax 即"Asynchronous Javascript And XML"(异步 JavaScript 和 XML),是指一种创建交互式网页应用的网页开发技术. ...

  2. brew更换国内源

    来源:清华大学开源软件镜像站(https://mirror.tuna.tsinghua.edu.cn/help/homebrew/) 替换现有上游 1 # brew 程序本身,Homebrew/Lin ...

  3. KVM (虚拟机创建及管理,存储管理)

    创建KVM虚拟机 1.图形化界面创建 第一步:查看软件包组 yum grouplist 第二步:下载GUI界面的软件包组 yum groupinstall "Server with GUI& ...

  4. docker 运用

    本文采用centos7,记录docker的简单运用方式 https://www.runoob.com/docker/docker-container-usage.html 1.安装odcker 2.启 ...

  5. SP3267 DQUERY - D-query 莫队板子题

    题意可见:https://www.luogu.com.cn/problem/SP3267 可在vj上提交:https://vjudge.net/problem/SPOJ-DQUERY 题意翻译 给出一 ...

  6. hdu4507吉哥系列故事——恨7不成妻 (数位dp)

    Problem Description 单身! 依然单身! 吉哥依然单身! DS级码农吉哥依然单身! 所以,他生平最恨情人节,不管是214还是77,他都讨厌! 吉哥观察了214和77这两个数,发现: ...

  7. Poj-3922 A simple stone game(k倍动态减法)

    题意: 游戏是这样的:两个玩家以一堆n个石头开始游戏.他们轮流从石堆里取石头,每次至少取一块.先走的人第一步最多可以拿n-1块石头.从那时起,一个玩家最多可以拿k倍于他的对手上次拿的石头.例如,如果一 ...

  8. hdu1828 Picture(线段树+扫描线+矩形周长)

    看这篇博客前可以看一下扫描线求面积:线段树扫描线(一.Atlantis HDU - 1542(覆盖面积) 二.覆盖的面积 HDU - 1255(重叠两次的面积))  解法一·:两次扫描线 如图我们可以 ...

  9. ef实现左关联查询

    在EF中,当在dbset使用join关联多表查询时,连接查询的表如果没有建立相应的外键关系时,EF生成的SQL语句是inner join(内联),对于inner join,有所了解的同学都知道,很多时 ...

  10. PowerShell随笔4---变量

    全局变量 输入$global:后按ctrl+space,我们就可以看到所有的全局变量. 比如我们可以查看PowerShell的版本: 我们可以在在编写脚本代码的时候使用这些变量,globle可以省略, ...