leetcode-longest palindromic substring-by 1337c0d3r
Given a string S, find the longest palindromic substring in S.
Note:
This is Part II of the article: Longest Palindromic Substring. Here, we describe an algorithm (Manacher’s algorithm) which finds the longest palindromic substring in linear time. Please read Part I for more background information.
In my previous post we discussed a total of four different methods, among them there’s a pretty simple algorithm with O(N2) run time and constant space complexity. Here, we discuss an algorithm that runs in O(N) time and O(N) space, also known as Manacher’s algorithm.
Hint:
Think how you would improve over the simpler O(N2) approach. Consider the worst case scenarios. The worst case scenarios are the inputs with multiple palindromes overlapping each other. For example, the inputs: “aaaaaaaaa” and “cabcbabcbabcba”. In fact, we could take advantage of the palindrome’s symmetric property and avoid some of the unnecessary computations.
An O(N) Solution (Manacher’s Algorithm):
First, we transform the input string, S, to another string T by inserting a special character ‘#’ in between letters. The reason for doing so will be immediately clear to you soon.
For example: S = “abaaba”, T = “#a#b#a#a#b#a#”.
To find the longest palindromic substring, we need to expand around each Ti such that Ti-d … Ti+d forms a palindrome. You should immediately see that d is the length of the palindrome itself centered at Ti.
We store intermediate result in an array P, where P[ i ] equals to the length of the palindrome centers at Ti. The longest palindromic substring would then be the maximum element in P.
Using the above example, we populate P as below (from left to right):
T = # a # b # a # a # b # a #
P = 0 1 0 3 0 1 6 1 0 3 0 1 0
Looking at P, we immediately see that the longest palindrome is “abaaba”, as indicated by P6 = 6.
Did you notice by inserting special characters (#) in between letters, both palindromes of odd and even lengths are handled graciously? (Please note: This is to demonstrate the idea more easily and is not necessarily needed to code the algorithm.)
Now, imagine that you draw an imaginary vertical line at the center of the palindrome “abaaba”. Did you notice the numbers in P are symmetric around this center? That’s not only it, try another palindrome “aba”, the numbers also reflect similar symmetric property. Is this a coincidence? The answer is yes and no. This is only true subjected to a condition, but anyway, we have great progress, since we can eliminate recomputing part of P[ i ]‘s.
Let us move on to a slightly more sophisticated example with more some overlapping palindromes, where S = “babcbabcbaccba”.

Above image shows T transformed from S = “babcbabcbaccba”. Assumed that you reached a state where table P is partially completed. The solid vertical line indicates the center (C) of the palindrome “abcbabcba”. The two dotted vertical line indicate its left (L) and right (R) edges respectively. You are at index i and its mirrored index around C is i’. How would you calculate P[ i ] efficiently?
Assume that we have arrived at index i = 13, and we need to calculate P[ 13 ] (indicated by the question mark ?). We first look at its mirrored index i’ around the palindrome’s center C, which is index i’ = 9.

The two green solid lines above indicate the covered region by the two palindromes centered at i and i’. We look at the mirrored index of i around C, which is index i’. P[ i' ] = P[ 9 ] = 1. It is clear that P[ i ] must also be 1, due to the symmetric property of a palindrome around its center.
As you can see above, it is very obvious that P[ i ] = P[ i' ] = 1, which must be true due to the symmetric property around a palindrome’s center. In fact, all three elements after C follow the symmetric property (that is, P[ 12 ] = P[ 10 ] = 0, P[ 13 ] = P[ 9 ] = 1, P[ 14 ] = P[ 8 ] = 0).

Now we are at index i = 15, and its mirrored index around C is i’ = 7. Is P[ 15 ] = P[ 7 ] = 7?
Now we are at index i = 15. What’s the value of P[ i ]? If we follow the symmetric property, the value of P[ i ]should be the same as P[ i' ] = 7. But this is wrong. If we expand around the center at T15, it forms the palindrome “a#b#c#b#a”, which is actually shorter than what is indicated by its symmetric counterpart. Why?

Colored lines are overlaid around the center at index i and i’. Solid green lines show the region that must match for both sides due to symmetric property around C. Solid red lines show the region that might not match for both sides. Dotted green lines show the region that crosses over the center.
It is clear that the two substrings in the region indicated by the two solid green lines must match exactly. Areas across the center (indicated by dotted green lines) must also be symmetric. Notice carefully that P[ i ' ] is 7 and it expands all the way across the left edge (L) of the palindrome (indicated by the solid red lines), which does not fall under the symmetric property of the palindrome anymore. All we know is P[ i ] ≥ 5, and to find the real value of P[ i ] we have to do character matching by expanding past the right edge (R). In this case, since P[ 21 ] ≠ P[ 1 ], we conclude that P[ i ] = 5.
Let’s summarize the key part of this algorithm as below:
then P[ i ] ← P[ i' ]
else P[ i ] ≥ P[ i' ]. (Which we have to expand past the right edge (R) to find P[ i ].
See how elegant it is? If you are able to grasp the above summary fully, you already obtained the essence of this algorithm, which is also the hardest part.
The final part is to determine when should we move the position of C together with R to the right, which is easy:
In each step, there are two possibilities. If P[ i ] ≤ R – i, we set P[ i ] to P[ i' ] which takes exactly one step. Otherwise we attempt to change the palindrome’s center to i by expanding it starting at the right edge, R. Extending R (the inner while loop) takes at most a total of N steps, and positioning and testing each centers take a total of N steps too. Therefore, this algorithm guarantees to finish in at most 2*N steps, giving a linear time solution.
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
// Transform S into T.
// For example, S = "abba", T = "^#a#b#b#a#$".
// ^ and $ signs are sentinels appended to each end to avoid bounds checking
string preProcess(string s) {
int n = s.length();
if (n == 0) return "^$";
string ret = "^";
for (int i = 0; i < n; i++)
ret += "#" + s.substr(i, 1);
ret += "#$";
return ret;
}
string longestPalindrome(string s) {
string T = preProcess(s);
int n = T.length();
int *P = new int[n];
int C = 0, R = 0;
for (int i = 1; i < n-1; i++) {
int i_mirror = 2*C-i; // equals to i' = C - (i-C)
P[i] = (R > i) ? min(R-i, P[i_mirror]) : 0;
// Attempt to expand palindrome centered at i
while (T[i + 1 + P[i]] == T[i - 1 - P[i]])
P[i]++;
// If palindrome centered at i expand past R,
// adjust center based on expanded palindrome.
if (i + P[i] > R) {
C = i;
R = i + P[i];
}
}
// Find the maximum element in P.
int maxLen = 0;
int centerIndex = 0;
for (int i = 1; i < n-1; i++) {
if (P[i] > maxLen) {
maxLen = P[i];
centerIndex = i;
}
}
delete[] P;
return s.substr((centerIndex - 1 - maxLen)/2, maxLen);
}
|
Note:
This algorithm is definitely non-trivial and you won’t be expected to come up with such algorithm during an interview setting. However, I do hope that you enjoy reading this article and hopefully it helps you in understanding this interesting algorithm. You deserve a pat if you have gone this far! ![]()
Further Thoughts:
- In fact, there exists a sixth solution to this problem — Using suffix trees. However, it is not as efficient as this one (run time O(N log N) and more overhead for building suffix trees) and is more complicated to implement. If you are interested, read Wikipedia’s article about Longest Palindromic Substring.
- What if you are required to find the longest palindromic subsequence? (Do you know the difference between substring and subsequence?)
Useful Links:
» Manacher’s Algorithm O(N) 时间求字符串的最长回文子串 (Best explanation if you can read Chinese)
» A simple linear time algorithm for finding longest palindrome sub-string
» Finding Palindromes
» Finding the Longest Palindromic Substring in Linear Time
» Wikipedia: Longest Palindromic Substring
leetcode-longest palindromic substring-by 1337c0d3r的更多相关文章
- [LeetCode] Longest Palindromic Substring 最长回文串
Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...
- Leetcode Longest Palindromic Substring
Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...
- [LeetCode] Longest Palindromic Substring(manacher algorithm)
Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...
- C++ leetcode Longest Palindromic Substring
明天就要上课了,再过几天又要见班主任汇报项目进程了,什么都没做的我竟然有一种迷之淡定,大概是想体验一波熬夜修仙的快乐了.不管怎么说,每天还是要水一篇博文,写一个LeetCode的题才圆满. 题目:Gi ...
- Leetcode: Longest Palindromic Substring && Summary: Palindrome
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
- LeetCode:Longest Palindromic Substring 最长回文子串
题目链接 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...
- Leetcode: Longest Palindromic Substring. java
Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...
- LeetCode——Longest Palindromic Substring
Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...
- [LeetCode]Longest Palindromic Substring题解(动态规划)
Longest Palindromic Substring: Given a string s, find the longest palindromic substring in s. You ma ...
- Leetcode:Longest Palindromic Substring分析和实现
问题大意是在给定字符串中查找最长的回文子串,所谓的回文就是依据中间位置对称的字符串,比如abba,aba都是回文. 这个问题初一看,非常简单,但是会很快发现那些简单的思路都会带来O(n^3)级别的时间 ...
随机推荐
- git设置core.autocrlf
背景: 使用虚拟机共享windows文件夹,文件夹中用git clone 一个仓库.在linux下编辑文件,用git status发现几乎所有的文件都为修改状态. 原因: windows下和lin ...
- vue 初步了解provide/inject
provider/inject:简单的来说就是在父组件中通过provider来提供变量,然后在子组件中通过inject来注入变量. 需要注意的是 provide / inject这对选项需要一起使用, ...
- Restful API学习笔记
之前关于这个概念在网上看了一些,看完似懂非懂,模模糊糊,发现专业术语或者说书面表达的形式对于理解这种十分抽象的概念还是低效了点. 书面文档方面看了以下几个: 理解本真的REST架构风格 1. 要深入理 ...
- javascript DOM相关语法
childNodes: 获取元素内的所有节点 包括文本节点:nodeType=3 , 元素节点:nodeType = 1 nodeType:它可以判断所有节点的类型 元素节点类型:1 文本节点:3 注 ...
- JavaScript HTML DOM学习记录
HTML DOM (文档对象模型) 当网页被加载时,浏览器会创建页面的文档对象模型(Document Object Model). HTML DOM 模型被构造为对象的树. HTML DOM 树 通过 ...
- 常用linux网络工具
iftop netstat nethogs可以查看进程占用网络的情况 nc -u -z -w2 192.168.0.1 1-1000 //扫描192.168.0.3 的端口 范围是 1-1000
- 【lua】LWT request请求处理
request请求处理 通过mod_lwt模块提供的处理程序来调用Lua脚本处理HTTP请求.具体流程: 判断该请求是否由LWT处理,如果不是,拒绝处理请求; 判断Lua脚本文件是否存在,如果不存在, ...
- 利用rem解决移动端响应适配问题
最近看了<从网易与淘宝的font-size思考前端设计稿与工作流>和github上的<使用Flexible实现手淘H5页面的终端适配> 以前一直用百分比的我,对移动前端的H5页 ...
- Linux学习(1)
Linux操作系统核心"Kernel",位于操作系统底层,是连接Shell.KDE.应用和硬件的接口,核心必须支持的管理事物: 1)系统调用接口(System Call Inter ...
- whatwg-fetch
fetch 是什么 XMLHttpRequest的最新替代技术 fetch优点 接口更简单.简洁,更加语义化 基于promise,更加好的流程化控制,可以不断then把参数传递,外加 async/aw ...