[Lydsy1704月赛] 最小公倍佩尔数
4833: [Lydsy1704月赛]最小公倍佩尔数
Time Limit: 8 Sec Memory Limit: 128 MB
Submit: 202 Solved: 99
[Submit][Status][Discuss]
Description
令(1+sqrt(2))^n=e(n)+f(n)*sqrt(2),其中e(n),f(n)都是整数,显然有(1-sqrt(2))^n=e(n)-f(n)*sqrt(2)。令g(
Input
Output
对于每组测试数据,输出一行一个非负整数,表示这组数据的答案。
Sample Input
1 233
2 233
3 233
4 233
5 233
Sample Output
5
35
42
121
HINT
Source
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e6+5; inline int add(int x,int y,const int ha){ x+=y; return x>=ha?x-ha:x;}
inline void ADD(int &x,int y,const int ha){ x+=y; if(x>=ha) x-=ha;}
inline int mul(int x,int y,const int ha){ return x*(ll)y%ha;} inline int ksm(int x,int y,const int ha){
int an=1;
for(;y;y>>=1,x=mul(x,x,ha)) if(y&1) an=mul(an,x,ha);
return an;
} int T,f[maxn],h[maxn],n,ans=0,p,now; inline void solve(){
f[1]=1; for(int i=2;i<=n;i++) f[i]=add(add(f[i-1],f[i-1],p),f[i-2],p); for(int i=1,inv;i<=n;i++){
h[i]=f[i],inv=ksm(h[i],p-2,p); for(int j=i*2;j<=n;j+=i) f[j]=mul(f[j],inv,p); now=mul(now,h[i],p);
ADD(ans,mul(now,i,p),p);
}
} int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&p); ans=0,now=1,solve(); printf("%d\n",ans);
} return 0;
}
[Lydsy1704月赛] 最小公倍佩尔数的更多相关文章
- BZOJ4833: [Lydsy1704月赛]最小公倍佩尔数(min-max容斥&莫比乌斯反演)(线性多项式多个数求LCM)
4833: [Lydsy1704月赛]最小公倍佩尔数 Time Limit: 8 Sec Memory Limit: 128 MBSubmit: 240 Solved: 118[Submit][S ...
- BZOJ 4833: [Lydsy1704月赛]最小公倍佩尔数(数论 + 最值反演)
题面 令 \({(1+\sqrt 2)}^n=e(n)+f(n)*\sqrt2\) ,其中 \(e(n),f(n)\) 都是整数,显然有 \({(1-\sqrt 2)}^n=e(n)-f(n)*\sq ...
- 【bzoj 4833】[Lydsy1704月赛]最小公倍佩尔数
Description 令 $(1+\sqrt 2)^n=e(n)+\sqrt 2\cdot f(n)$ ,其中 $e(n),f(n)$ 都是整数,显然有 $(1-\sqrt 2)^n=e(n)-\s ...
- BZOJ4833: [Lydsy1704月赛]最小公倍佩尔数
Problem 传送门 Sol 容易得到 \[f_n=e_{n-1}+f_{n-1},e_{n-1}=f_{n-1}+e_{n-1},f_1=e_1=1\] 那么 \[f_n=2\times \sum ...
- 【BZOJ4833】最小公倍佩尔数(min-max容斥)
[BZOJ4833]最小公倍佩尔数(min-max容斥) 题面 BZOJ 题解 首先考虑怎么求\(f(n)\),考虑递推这个东西 \((1+\sqrt 2)(e(n-1)+f(n-1)\sqrt 2) ...
- [bzoj 4833]最小公倍佩尔数
传送门 Description Let \((1+\sqrt2)^n=e(n)+f(n)\cdot\sqrt2\) , both \(e(n)\) and \(f(n)\) are integer ...
- bzoj 4836 [Lydsy1704月赛]二元运算 分治FFT+生成函数
[Lydsy1704月赛]二元运算 Time Limit: 8 Sec Memory Limit: 128 MBSubmit: 577 Solved: 201[Submit][Status][Di ...
- BZOJ4831: [Lydsy1704月赛]序列操作(非常nice的DP& 贪心)
4831: [Lydsy1704月赛]序列操作 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 250 Solved: 93[Submit][Statu ...
- bzoj 4831 [Lydsy1704月赛]序列操作 dp
[Lydsy1704月赛]序列操作 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 203 Solved: 69[Submit][Status][Dis ...
随机推荐
- webpack4.x 入门一篇足矣
前言: webpack4出了以后,一些插件变化很大,和之前的版本使用方式不一样,新手入坑,本篇将介绍如何从一开始配置webpack4的开发版本,对css,js进行编译打包合并生成md5,CSS中的图片 ...
- PAT L1-009 N个数求和(运用GCD进行通分)
题目链接:https://www.patest.cn/contests/gplt/L1-009 题目: 本题的要求很简单,就是求N个数字的和.麻烦的是,这些数字是以有理数“分子/分母”的形式给出的,你 ...
- Python 开发中easy_install的安装及使用
easy_install是一个python的扩展包,主要是用来简化python安装第三方安装包,在安装了easy_install之后,安装python第三方安装包就只需要在命令行中输入:easy_in ...
- 在AndroidStudio中导入开源库 或者jar
方法一: 先点击Androidstudio中的Project Structure,如图 图1 到如下界面 图2 然后点击+号 图3 选择Library dependency 图4 输入你要的jar包, ...
- 史诗级Java/JavaWeb学习资源免费分享
黑马内部视频+相关配套学习资料 Java Spring 技术栈构建前后台团购网站 Java SSM开发大众点评后端 欢迎关注微信公众号:Java面试通关手册 回复关键词: "资源分享第一波& ...
- 动归专题QAQ(两天创造的刷题记录哟!✿✿ヽ(°▽°)ノ✿✿)(未填坑)
1092 采药:由于没有限制开始时间和结束时间,01背包就好了 1095 开心的金明:01背包,无fuck说 1104 摆花:f[i][j]表示摆了i种花,第i种花摆了j种的方案数,乱转移0.0(感觉 ...
- C++之指针,引用与数组
引用只是对象的另一个名字,通过在变量名前面添加"&”符号来定义,而指针保存的是另一个对象的地址,它们两都提供了间接访问所服务变量的途径. 但是它们的差别还是挺大的: 先从它们的值说起 ...
- ffmpeg安装与配置
wget http://www.ffmpeg.org/releases/ffmpeg-3.1.tar.gz tar -zxvf ffmpeg-3.1.tar.gz cd ffmpeg-3.1 ./co ...
- 多路复用I/O模型poll() 模型 代码实现
多路复用I/O模型poll() 模型 代码实现 poll()机制和select()机制是相似的,都是对多个描述符进行轮询的方式. 不同的是poll()没有描述符数目的限制. 是通过struct pol ...
- Storm实战常见的问题
该文档为实实在在的原创文档,转载请注明: http://blog.sina.com.cn/s/blog_8c243ea30101k0k1.html 类型 详细 备注 该文档是群里几个朋友在storm实 ...