[Nescafé41]异化多肽(多项式求逆元)
2015年的题,应该是将形式幂级数引入国内的元老级题目。
大意:给定一个大小为m的正整数序列和n,问有多少种选法可以凑成n,每个数可以选多次,种类不同算不同方案。$n,m,C \leqslant 100000$
首先处理出生成函数$C$,设答案的形式幂级数为$F$,有递推式$F_n=\sum F_{n-k}*C_k$。
因为这个问题,导致完全不可以用分治解决了。所以我们重新从$C$的角度考虑:
角度一:$$F=1+C+C^2+C^3+...=\frac{1-C^\infty}{1-C}$$角度二:$$F=FC+1$$最后都有:$$F=\frac{1}{1-C}$$
这样就是一个裸的多项式求逆问题了。
模数$1005060097$的原根是$5$。多项式有无逆元取决于其常数项有无逆元,显然这题正好保证了$1-C$的常数项为$1$
再次提醒:次数界开两倍,复杂度:$$T(n)=O(n\log n)+T(n/2)=O(n\log n)$$不过基于常数问题还是不要把它看成一个$log$比较好。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
using namespace std; const int N=,mod=,g=;
int n,m,x,rev[N],tmp[N],a[N],b[N],c[N],ic[N],lg[N]; int ksm(int a,int b){
int res;
for (res=; b; a=1ll*a*a%mod,b>>=)
if (b & ) res=1ll*res*a%mod;
return res;
} void DFT(int a[],int n,int f){
for (int i=; i<n; i++) if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int i=; i<n; i<<=){
int wn=ksm(g,(f==) ? (mod-)/(i<<) : (mod-)-(mod-)/(i<<));
for (int p=i<<,j=; j<n; j+=p){
int w=;
for (int k=; k<i; k++,w=1ll*w*wn%mod){
int x=a[j+k],y=1ll*w*a[i+j+k]%mod; a[j+k]=(x+y)%mod; a[i+j+k]=(x-y+mod)%mod;
}
}
}
if (f==) return;
int inv=ksm(n,mod-);
for (int i=; i<n; i++) a[i]=1ll*a[i]*inv%mod;
} void get(int a[],int b[],int l){
if (l==){ b[]=ksm(a[],mod-); return; }
get(a,b,l>>); int n=l<<;
for (int i=; i<l; i++) tmp[i]=a[i],tmp[i+l]=;
for (int i=; i<n; i++) rev[i]=(rev[i>>]>>)|((i&)<<(lg[n]-));
DFT(tmp,n,); DFT(b,n,);
for (int i=; i<n; i++) tmp[i]=1ll*b[i]*(-1ll*tmp[i]*b[i]%mod+mod)%mod;
DFT(tmp,n,-);
for (int i=; i<l; i++) b[i]=tmp[i],b[i+l]=;
} int main(){
freopen("polypeptide.in","r",stdin);
freopen("polypeptide.out","w",stdout);
scanf("%d%d",&n,&m); c[]=;
rep(i,,n<<) lg[i]=lg[i>>]+;
rep(i,,m) scanf("%d",&x),c[x]++;
rep(i,,n) c[i]=mod-c[i];
for (m=; m<=n; m<<=); get(c,ic,m);
printf("%d\n",ic[n]);
return ;
}
[Nescafé41]异化多肽(多项式求逆元)的更多相关文章
- 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]
1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...
- BZOJ 3456: 城市规划 [多项式求逆元 DP]
题意: 求出n个点的简单(无重边无自环)无向连通图数目.方案数mod 1004535809(479 * 2 ^ 21 + 1)即可. n<=130000 DP求方案 g(n) n个点所有图的方案 ...
- 多项式求逆元详解+模板 【洛谷P4238】多项式求逆
概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出 ...
- BZOJ 3456: 城市规划 [多项式求逆元 组合数学 | 生成函数 多项式求ln]
3456: 城市规划 题意:n个点组成的无向连通图个数 以前做过,今天复习一下 令\(f[n]\)为n个点的无向连通图个数 n个点的完全图个数为\(2^{\binom{n}{2}}\) 和Bell数的 ...
- bzoj 3456: 城市规划【NTT+多项式求逆】
参考:http://blog.miskcoo.com/2015/05/bzoj-3456 首先推出递推式(上面的blog讲的挺清楚的),大概过程是正难则反,设g为n个点的简单(无重边无自环)无向图数目 ...
- COGS 2259 异化多肽 —— 生成函数+多项式求逆
题目:http://cogs.pro:8080/cogs/problem/problem.php?pid=2259 如果构造生成函数是许多个 \( (1+x^{k}+x^{2k}+...) \) 相乘 ...
- Re.多项式求逆
前言 emmm暂无 多项式求逆目的 顾名思义 就是求出一个多项式的摸xn时的逆 给定一个多项式F(x),请求出一个多项式G(x),满足F(x)∗G(x)≡1(modxn),系数对998244353取模 ...
- BZOJ 3456: 城市规划 与 多项式求逆算法介绍(多项式求逆, dp)
题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减 ...
- 【BZOJ3625】【CF438E】小朋友和二叉树 NTT 生成函数 多项式开根 多项式求逆
题目大意 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\ldots ,c_n\).如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合\(\{c_1,c_2,\ldots ,c_n\ ...
随机推荐
- NGINX: 返回大 JSON 数据不完整的问题
说明: 内容全部来自 [ CSDN 金玮良 ] nginx 返回数据不完整的问题 当nginx 遇到大数据流时,会把数据先放在自己的缓冲区,然后一并发给客户端. 那如果这个结论成立, 那一次请求的数据 ...
- 基本控件文档-UIKit结构图---iOS-Apple苹果官方文档翻译
本系列所有开发文档翻译链接地址:iOS7开发-Apple苹果iPhone开发Xcode官方文档翻译PDF下载地址 UIKit结构图 //转载请注明出处--本文永久链接:http://www.cnbl ...
- quick-cocos2dx lua中读取 加密 csv表
我非常想把一些非必需的信息以CSV表的格式保存到客户端,以减少和服务器的通讯,降低压力.于是写了这么一个. 但因为大家觉得这样的话,需要每次登陆时来检测同步这些数据,会减慢登陆速度,于是没有用到. 我 ...
- MSSQL DBOtherSQL
--------------------------查询表中的数据------------------------------ --1.请查询出MyStudent表中的所有数据 --下面的语句表示查询 ...
- 【遍历集合】Java遍历List,Map,Vector,Set的几种方法
关于list,map,set的区别参考http://www.cnblogs.com/qlqwjy/p/7406573.html 1.遍历list @Test public void testList( ...
- python实战===用python调用jar包(原创)
一个困扰我很久的问题,今天终于解决了.用python调用jar包 很简单,但是网上的人就是乱转载.自己试都不试就转载,让我走了很多弯路 背景:python3.6 32位 + jre 32位 + ...
- Java中volatile修饰符,不稳定标记的用法笔记
今天学java特性时,发现了volatile修饰符,这个修饰符修饰的变量告诉java编译器忽略优化机制,这样的优势是: java优化后,寄存器会缓存内存里的变量,另一个线程修改这个变量的内存时,不会同 ...
- mybatis模糊查询sql
今天下午做的一个功能,要用到模糊查询,字段是description,刚开始我的写法用的是sql中的模糊查询语句, 但是这个有问题,只有将字段的全部值传入其中,才能查询,所以不是迷糊查询. 后来经过搜索 ...
- JVM核心机制(类加载器、三种类加载器、代理加载模式、双亲委派机制
- Linux Python apache的cgi配置
一.找到安装Apache的目录/usr/local/apache2/conf,并对httpd.conf配置文件进行修改 1.加载cgi模块 去掉注释: LoadModule cgid_module m ...