2015年的题,应该是将形式幂级数引入国内的元老级题目。

大意:给定一个大小为m的正整数序列和n,问有多少种选法可以凑成n,每个数可以选多次,种类不同算不同方案。$n,m,C \leqslant 100000$

首先处理出生成函数$C$,设答案的形式幂级数为$F$,有递推式$F_n=\sum F_{n-k}*C_k$。
因为这个问题,导致完全不可以用分治解决了。所以我们重新从$C$的角度考虑:
角度一:$$F=1+C+C^2+C^3+...=\frac{1-C^\infty}{1-C}$$角度二:$$F=FC+1$$最后都有:$$F=\frac{1}{1-C}$$
这样就是一个裸的多项式求逆问题了。
模数$1005060097$的原根是$5$。多项式有无逆元取决于其常数项有无逆元,显然这题正好保证了$1-C$的常数项为$1$
再次提醒:次数界开两倍,复杂度:$$T(n)=O(n\log n)+T(n/2)=O(n\log n)$$不过基于常数问题还是不要把它看成一个$log$比较好。

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
using namespace std; const int N=,mod=,g=;
int n,m,x,rev[N],tmp[N],a[N],b[N],c[N],ic[N],lg[N]; int ksm(int a,int b){
int res;
for (res=; b; a=1ll*a*a%mod,b>>=)
if (b & ) res=1ll*res*a%mod;
return res;
} void DFT(int a[],int n,int f){
for (int i=; i<n; i++) if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int i=; i<n; i<<=){
int wn=ksm(g,(f==) ? (mod-)/(i<<) : (mod-)-(mod-)/(i<<));
for (int p=i<<,j=; j<n; j+=p){
int w=;
for (int k=; k<i; k++,w=1ll*w*wn%mod){
int x=a[j+k],y=1ll*w*a[i+j+k]%mod; a[j+k]=(x+y)%mod; a[i+j+k]=(x-y+mod)%mod;
}
}
}
if (f==) return;
int inv=ksm(n,mod-);
for (int i=; i<n; i++) a[i]=1ll*a[i]*inv%mod;
} void get(int a[],int b[],int l){
if (l==){ b[]=ksm(a[],mod-); return; }
get(a,b,l>>); int n=l<<;
for (int i=; i<l; i++) tmp[i]=a[i],tmp[i+l]=;
for (int i=; i<n; i++) rev[i]=(rev[i>>]>>)|((i&)<<(lg[n]-));
DFT(tmp,n,); DFT(b,n,);
for (int i=; i<n; i++) tmp[i]=1ll*b[i]*(-1ll*tmp[i]*b[i]%mod+mod)%mod;
DFT(tmp,n,-);
for (int i=; i<l; i++) b[i]=tmp[i],b[i+l]=;
} int main(){
freopen("polypeptide.in","r",stdin);
freopen("polypeptide.out","w",stdout);
scanf("%d%d",&n,&m); c[]=;
rep(i,,n<<) lg[i]=lg[i>>]+;
rep(i,,m) scanf("%d",&x),c[x]++;
rep(i,,n) c[i]=mod-c[i];
for (m=; m<=n; m<<=); get(c,ic,m);
printf("%d\n",ic[n]);
return ;
}

[Nescafé41]异化多肽(多项式求逆元)的更多相关文章

  1. 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]

    1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...

  2. BZOJ 3456: 城市规划 [多项式求逆元 DP]

    题意: 求出n个点的简单(无重边无自环)无向连通图数目.方案数mod 1004535809(479 * 2 ^ 21 + 1)即可. n<=130000 DP求方案 g(n) n个点所有图的方案 ...

  3. 多项式求逆元详解+模板 【洛谷P4238】多项式求逆

    概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出 ...

  4. BZOJ 3456: 城市规划 [多项式求逆元 组合数学 | 生成函数 多项式求ln]

    3456: 城市规划 题意:n个点组成的无向连通图个数 以前做过,今天复习一下 令\(f[n]\)为n个点的无向连通图个数 n个点的完全图个数为\(2^{\binom{n}{2}}\) 和Bell数的 ...

  5. bzoj 3456: 城市规划【NTT+多项式求逆】

    参考:http://blog.miskcoo.com/2015/05/bzoj-3456 首先推出递推式(上面的blog讲的挺清楚的),大概过程是正难则反,设g为n个点的简单(无重边无自环)无向图数目 ...

  6. COGS 2259 异化多肽 —— 生成函数+多项式求逆

    题目:http://cogs.pro:8080/cogs/problem/problem.php?pid=2259 如果构造生成函数是许多个 \( (1+x^{k}+x^{2k}+...) \) 相乘 ...

  7. Re.多项式求逆

    前言 emmm暂无 多项式求逆目的 顾名思义 就是求出一个多项式的摸xn时的逆 给定一个多项式F(x),请求出一个多项式G(x),满足F(x)∗G(x)≡1(modxn),系数对998244353取模 ...

  8. BZOJ 3456: 城市规划 与 多项式求逆算法介绍(多项式求逆, dp)

    题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减 ...

  9. 【BZOJ3625】【CF438E】小朋友和二叉树 NTT 生成函数 多项式开根 多项式求逆

    题目大意 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\ldots ,c_n\).如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合\(\{c_1,c_2,\ldots ,c_n\ ...

随机推荐

  1. PHP 练习1:新闻发布

    1.新闻发布主页面 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://w ...

  2. bzoj 1305 二分+最大流判定|贪心

    首先我们二分一个答案mid,在判定是否能举办mid次,那么对于每个次我们可以用最大流根据是否满流(流量为n*mid)来判定,对于每个点我们拆成两个点,分别表示这个人要和他喜欢和不喜欢的人一起跳舞,那么 ...

  3. hdu 1081 To The Max(dp+化二维为一维)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1081 To The Max Time Limit: 2000/1000 MS (Java/Others ...

  4. Part2-HttpClient官方教程-Chapter2-连接管理

    2.1 连接持久性 建立从一个主机到另一个主机的连接的过程相当复杂,并且涉及两个端点之间的多个分组交换,这可能相当耗时.连接握手的开销可能很大,特别是对于小型的HTTP消息. 如果可以重新使用开放连接 ...

  5. python基础===tkinter学习链接

    http://effbot.org/tkinterbook/tkinter-classes.htm

  6. python基础===进程,线程,协程的区别(转)

    本文转自:http://blog.csdn.net/hairetz/article/details/16119911 进程拥有自己独立的堆和栈,既不共享堆,亦不共享栈,进程由操作系统调度. 线程拥有自 ...

  7. python实战===用python调用jar包(原创)

    一个困扰我很久的问题,今天终于解决了.用python调用jar包 很简单,但是网上的人就是乱转载.自己试都不试就转载,让我走了很多弯路 背景:python3.6 32位   + jre 32位  +  ...

  8. pycaffe做识别时通道转换问题

    转自---------------------  作者:Peanut_范  来源:CSDN  原文:https://blog.csdn.net/u013841196/article/details/7 ...

  9. HA集群

    //硬件准备: .两个机器,相同系统 .网卡ip为:aming 192.168.11.24 aming1 192.168.11.23 //实验准备: . hostname : aming , amin ...

  10. C#判断目录是否为隐藏

    判断方法: DirectoryInfo di = new DirectoryInfo(path); if ((di.Attributes & FileAttributes.Hidden) == ...