BZOJ2194:快速傅立叶之二(FFT)
Description
请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5。 a,b中的元素均为小于等于100的非负整数。
Input
Output
输出N行,每行一个整数,第i行输出C[i-1]。
Sample Input
3 1
2 4
1 1
2 4
1 4
Sample Output
12
10
6
1
Solution

像这样下标和一定的式子就能用FFT进行优化了
下方公式转自https://blog.csdn.net/ycdfhhc/article/details/50636751
因为我不会markdown
一开始我们发现初始式子并不是FFT的形式没法搞
然后我们就将B数组翻转过来,然后发现下标和一定了……
然后把式子用另一个D表示出来,然后就可以FFT了……
答案C(0~n-1)对应D(n-1,n+n-2)
快二轮了感觉没啥希望
Code
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define N (400000+100)
using namespace std; double pi=acos(-1.0);
int n,fn,l,r[N];
struct complex
{
double x,y;
complex (double xx=,double yy=)
{
x=xx; y=yy;
}
}a[N],b[N]; complex operator + (complex a,complex b){return complex(a.x+b.x,a.y+b.y);}
complex operator - (complex a,complex b){return complex(a.x-b.x,a.y-b.y);}
complex operator * (complex a,complex b){return complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
complex operator / (complex a,double b){return complex(a.x/b,a.y/b);} void FFT(int n,complex *a,int opt)
{
for (int i=; i<n; ++i)
if (i<r[i])
swap(a[i],a[r[i]]);
for (int k=; k<n; k<<=)
{
complex wn=complex(cos(pi/k),opt*sin(pi/k));
for (int i=; i<n; i+=(k<<))
{
complex w=complex(,);
for (int j=; j<k; ++j,w=w*wn)
{
complex x=a[i+j], y=w*a[i+j+k];
a[i+j]=x+y; a[i+j+k]=x-y;
}
}
}
if (opt==-) for (int i=; i<n; ++i) a[i]=a[i]/n;
} int main()
{
scanf("%d",&n); n--;
for (int i=; i<=n; ++i)
scanf("%lf%lf",&a[i].x,&b[n-i].x);
fn=;
while (fn<=n+n) fn<<=, l++;
for (int i=; i<fn; ++i)
r[i]=(r[i>>]>>) | ((i&)<<(l-));
FFT(fn,a,); FFT(fn,b,);
for (int i=; i<=fn; ++i)
a[i]=a[i]*b[i];
FFT(fn,a,-);
for (int i=n; i<=n+n; ++i)
printf("%d\n",(int)(a[i].x+0.5));
}
BZOJ2194:快速傅立叶之二(FFT)的更多相关文章
- bzoj2194 快速傅立叶之二 ntt
bzoj2194 快速傅立叶之二 链接 bzoj 思路 对我这种和式不强的人,直接转二维看. 发现对\(C_k\)贡献的数对(i,j),都是右斜对角线. 既然贡献是对角线,我们可以利用对角线的性质了. ...
- [bzoj2194]快速傅立叶之二_FFT
快速傅立叶之二 bzoj-2194 题目大意:给定两个长度为$n$的序列$a$和$b$.求$c$序列,其中:$c_i=\sum\limits_{j=i}^{n-1} a_j\times b_{j-i} ...
- bzoj 2194: 快速傅立叶之二 -- FFT
2194: 快速傅立叶之二 Time Limit: 10 Sec Memory Limit: 259 MB Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k & ...
- 2018.11.18 bzoj2194: 快速傅立叶之二(fft)
传送门 模板题. 将bbb序列反过来然后上fftfftfft搞定. 代码: #include<bits/stdc++.h> #define ri register int using na ...
- 【bzoj2194】快速傅立叶之二 FFT
题意:给定序列a,b,求序列c,\(c(k)=\sum_{i=k}^{n-1}a(i)b(i-k)\) Solution: \[ c(k)=\sum_{i=k}^{n-1}a(i)b(i-k)\\ c ...
- BZOJ2194 快速傅立叶之二 【fft】
题目 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非负整数. 输入格式 ...
- bzoj2194: 快速傅立叶之二
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- bzoj千题计划256:bzoj2194: 快速傅立叶之二
http://www.lydsy.com/JudgeOnline/problem.php?id=2194 相乘两项的下标 的 差相同 那么把某一个反过来就是卷积形式 fft优化 #include< ...
- BZOJ.2194.快速傅立叶之二(FFT 卷积)
题目链接 \(Descripiton\) 给定\(A[\ ],B[\ ]\),求\[C[k]=\sum_{i=k}^{n-1}A[i]*B[i-k]\ (0\leq k<n)\] \(Solut ...
随机推荐
- golang学习之文件上传
首先是上传页面upload.html: <!doctype html> <html> <head> <meta charset="utf-8&quo ...
- [javaEE] EL表达式获取数据
jsp标签: <jsp:include> <jsp:forward> 实现请求转发 <jsp:param> 给上面的添加参数的 EL表达式: 1.获取变量数据 &l ...
- JAVA中LinkedLockingQueue的简单使用
1.相关知识的了解 阻塞队列:当队列为空时,去队列中取数据会被阻塞.当队列满时,往队列中放数据会被阻塞. 非阻塞队列:当队列为空时,去队列取数据会直接返回失败,队列满时,往队列中放数据会直接返回失 ...
- Java序列话和反序列化理解(New)
public interface Serializable {} 该接口没有任何实现方法,是一种标志,instance of Serializable 会判断object类型 一.序列化和反序列化的 ...
- maven配置环境
今天初学maven,先学习一下如何在windows下面配置maven,当然你要先配置好jdk的环境. 第一步,上官网下载maven插件,网址是:点击打开链接 第二步,解压文件夹,放在某一个盘符下,我是 ...
- jQuery——子元素筛选器
子元素筛选器 名称 :first-child JQ语法 jQuery( "selector:first-child" ) 说明 :first-child选择器用于匹配作为父元素的第 ...
- Linux下mongodb
Linux下mongodb安装: 新建mongodb文件夹 下载安装包 curl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-3. ...
- Python基础-月考
1. 8<<2等于? # 解释:将8按位左移2位 # 8 0 0 0 0 1 0 0 0 # 32 0 0 1 0 0 0 0 0 2. 通过内置函数计算5除以2的余数 print(div ...
- iOS线程和进程的区别和联系
线程和进程的区别主要在于它们是不同的操作系统资源管理方式.进程有独立的地址空间,一个进程崩溃后,在保护模式的影响下不会对其他进程产生影响,而线程只是一个进程中的不同执行路径.线程有自己的堆栈和局部变量 ...
- 【OBJC】数字转中文大写
博客园都不知道怎么外链图片…… - (void)numToString:(double)num{ ; NSMutableString *szChMoney = [[NSMutableString al ...