uva

紫书例题,这个区间dp最容易错的应该是(S)这种匹配情况,如果不是题目中给了提示我就忽略了,只想着左右分割忘记了这种特殊的例子。

dp[i][j]=MIN{dp[i+1][j-1] | if(match(i,j) , dp[i][k]+dp[k+1][j] | i<=k<=j .}
注意初始化dp[i][i]=1,表示1个字符最少需要一个才能匹配,dp[i+1][i]=0,因为可能只有两个字符使得i+1>j-1,我们可以认为中间是空字符已经匹配了。

打印路径利用了递归,很巧妙,lrj的代码确实短小精悍。

还有就是本题的输入输出要注意,可能出现空串,输入的每一行字符间(包括第一行字符和t之间)都要键入一个空格,输出每两个答案之间输出一个空格。

为了防止getline()将输入的t读入到s中,我们将t以字符形式读入。

 #include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
int dp[][];
char s[];
bool match(int i,int j)
{
return (s[i]=='['&&s[j]==']')||(s[i]=='('&&s[j]==')');
}
void print(int l,int r)
{
if(l>r) return;
if(l==r){
if(s[l]=='['||s[r]==']') printf("[]");
else printf("()");
return;
}
if(dp[l][r]==dp[l+][r-]&&match(l,r)){
printf("%c",s[l]);
print(l+,r-);
printf("%c",s[r]);
return;
}
for(int k=l;k<=r;++k){
if(dp[l][r]==dp[l][k]+dp[k+][r]){
print(l,k);
print(k+,r);
return;
}
}
}
int main()
{
int t,n,m=,i,j,k;
cin.getline(s,);
t=atoi(s);
while(t--){getchar();m++;
if(m>) puts("");
cin.getline(s+,);
n=strlen(s+);
memset(dp,inf,sizeof(dp));
for(i=;i<=n;++i)
{
dp[i][i]=;
dp[i+][i]=;
}
for(int len=;len<=n;++len)
{
for(i=,j=len;j<=n;++i,++j)
{
if(match(i,j)) dp[i][j]=min(dp[i][j],dp[i+][j-]);
for(k=i;k<=j;++k)
{
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+][j]);
}
}
}
//cout<<dp[1][n]<<endl;
print(,n);puts("");
}
return ;
}

UVA 1626 区间dp、打印路径的更多相关文章

  1. UVa11404 - Palindromic Subsequence(区间DP+打印路径)

    题目大意 给定一个字符串,要求你删除尽量少的字符,使得原字符串变为最长回文串,并把回文串输出,如果答案有多种,则输出字典序最小的 题解 有两种解法,第一种是把字符串逆序,然后求两个字符串的LCS,并记 ...

  2. 紫书 例题 9-10 UVa 1626 (区间dp + 输出技巧)

    当前区间f(i, j)分两种情况,一种是s[i]于s[j]符合要求,那么可以转移到f[i + 1][j - 1] 这样答案只会更小或者相等 第二种是直接分成两个部分, 即f[i][j] = f[i][ ...

  3. POJ 1141 Brackets Sequence(区间DP, DP打印路径)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  4. BZOJ 1260&UVa 4394 区间DP

    题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...

  5. 【noi 2.6_2000】&【poj 2127】 最长公共子上升序列 (DP+打印路径)

    由于noi OJ上没有Special Judge,所以我是没有在这上面AC的.但是在POJ上A了. 题意如标题. 解法:f[i][j]表示a串前i个和b串前j个且包含b[j]的最长公共上升子序列长度 ...

  6. 紫书 例题 9-9 UVa 10003 (区间dp+递推顺序)

    区间dp,可以以一个区间为状态,f[i][j]是第i个切点到第j个切点的木棍的最小费用 那么对于当前这一个区间,枚举切点k, 可以得出f[i][j] = min{dp(i, k) + dp(k, j) ...

  7. UVA 10003 区间DP

    这个题目蛮有新意的,一度导致我没看透他是区间DP 给一个0-L长度的木板,然后给N个数,表示0-L之间的某个刻度,最后要用刀把每个刻度都切一下 使其断开,然后每次分裂的cost是分裂前的木板的长度.求 ...

  8. UVALive 4261——Trip Planning——————【dp+打印路径】

    Trip Planning Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Stat ...

  9. POJ 题目1141 Brackets Sequence(区间DP记录路径)

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 27793   Accepted: 788 ...

随机推荐

  1. js中的整除运算

      Math.ceil(count / pagesize); //向上整除 4/3=2;   Math.floor(count / pagesize); //向下整除 4/3=1; Math.roun ...

  2. 斯坦福大学Andrew Ng - 机器学习笔记(8) -- 推荐系统 & 大规模机器学习 & 图片文字识别

    大概用了一个月,Andrew Ng老师的机器学习视频断断续续看完了,以下是个人学习笔记,入门级别,权当总结.笔记难免有遗漏和误解,欢迎讨论. 鸣谢:中国海洋大学黄海广博士提供课程视频和个人笔记,在此深 ...

  3. oracle Dba之路

    如何快速的成为一个合格的 DBA? 2010年11月03日 11:25:00 阅读数:584 原文来自:http://topic.csdn.net/u/20101031/21/A78B2EA1-6F2 ...

  4. Java并发—java.util.concurrent.locks包

    一.synchronized的缺陷 synchronized是java中的一个关键字,也就是说是Java语言内置的特性.那么为什么会出现Lock呢? 如果一个代码块被synchronized修饰了,当 ...

  5. Python Static Method

    How to define a static method in Python?Demo: #!/usr/bin/python2.7 #coding:utf-8 # FileName: test.py ...

  6. appium入门基础

    1. 建立session时常用命令: DesiredCapabilities cap = new DesiredCapabilities(); cap.SetCapability("brow ...

  7. Part01、memcache 缓存

    Python操作 RabbitMQ.Redis.Memcache.SQLAlchemy 目录 一. Memcached Memcached安装和基本使用 Python操作Memcached2.1 se ...

  8. Python(递归)

    递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数. 举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n,用函数fact(n)表示,可以 ...

  9. 20包含min函数的栈

      题目描述 定义栈的数据结构,请在该类型中实现一个能够得到栈最小元素的min函数.   建一个辅助栈,把每次最小最小的元素(之前最小元素,与当前新入栈的元素比较)放在辅助栈里.   import j ...

  10. 【工具】Notepad++ 上,代码格式化工具

    一.概述 Windows 自带的记事本功能太过简单,因此我常常使用 Notepad++ 查看文本.Notepad++ 支持插件功能,最近需要使用 Notepad++ 查看 Html 代码,而这些代码多 ...