Storm-源码分析- spout (backtype.storm.spout)
1. ISpout接口
ISpout作为实现spout的核心interface, spout负责feeding message, 并且track这些message.
如果需要Spout track发出的message, 必须给出message-id, 这个message-id可以是任意类型, 但是如果不指定或将message-id置空, storm就不会track这个message
必须要注意的是, spout线程会在一个线程中调用ack, fail, nextTuple, 所以不用考虑互斥, 但是也要这些function中, 避免任意的block
/**
* ISpout is the core interface for implementing spouts. A Spout is responsible
* for feeding messages into the topology for processing. For every tuple emitted by
* a spout, Storm will track the (potentially very large) DAG of tuples generated
* based on a tuple emitted by the spout. When Storm detects that every tuple in
* that DAG has been successfully processed, it will send an ack message to the Spout.
*
* <p>If a tuple fails to be fully process within the configured timeout for the
* topology (see {@link backtype.storm.Config}), Storm will send a fail message to the spout
* for the message.</p>
*
* <p> When a Spout emits a tuple, it can tag the tuple with a message id. The message id
* can be any type. When Storm acks or fails a message, it will pass back to the
* spout the same message id to identify which tuple it's referring to. If the spout leaves out
* the message id, or sets it to null, then Storm will not track the message and the spout
* will not receive any ack or fail callbacks for the message.</p>
*
* <p>Storm executes ack, fail, and nextTuple all on the same thread. This means that an implementor
* of an ISpout does not need to worry about concurrency issues between those methods. However, it
* also means that an implementor must ensure that nextTuple is non-blocking: otherwise
* the method could block acks and fails that are pending to be processed.</p>
*/
public interface ISpout extends Serializable {
/**
* Called when a task for this component is initialized within a worker on the cluster.
* It provides the spout with the environment in which the spout executes.
*
* <p>This includes the:</p>
*
* @param conf The Storm configuration for this spout. This is the configuration provided to the topology merged in with cluster configuration on this machine.
* @param context This object can be used to get information about this task's place within the topology, including the task id and component id of this task, input and output information, etc.
* @param collector The collector is used to emit tuples from this spout. Tuples can be emitted at any time, including the open and close methods. The collector is thread-safe and should be saved as an instance variable of this spout object.
*/
void open(Map conf, TopologyContext context, SpoutOutputCollector collector); /**
* Called when an ISpout is going to be shutdown. There is no guarentee that close
* will be called, because the supervisor kill -9's worker processes on the cluster.
*
* <p>The one context where close is guaranteed to be called is a topology is
* killed when running Storm in local mode.</p>
*/
void close(); /**
* Called when a spout has been activated out of a deactivated mode.
* nextTuple will be called on this spout soon. A spout can become activated
* after having been deactivated when the topology is manipulated using the
* `storm` client.
*/
void activate(); /**
* Called when a spout has been deactivated. nextTuple will not be called while
* a spout is deactivated. The spout may or may not be reactivated in the future.
*/
void deactivate(); /**
* When this method is called, Storm is requesting that the Spout emit tuples to the
* output collector. This method should be non-blocking, so if the Spout has no tuples
* to emit, this method should return. nextTuple, ack, and fail are all called in a tight
* loop in a single thread in the spout task. When there are no tuples to emit, it is courteous
* to have nextTuple sleep for a short amount of time (like a single millisecond)
* so as not to waste too much CPU.
*/
void nextTuple(); /**
* Storm has determined that the tuple emitted by this spout with the msgId identifier
* has been fully processed. Typically, an implementation of this method will take that
* message off the queue and prevent it from being replayed.
*/
void ack(Object msgId); /**
* The tuple emitted by this spout with the msgId identifier has failed to be
* fully processed. Typically, an implementation of this method will put that
* message back on the queue to be replayed at a later time.
*/
void fail(Object msgId);
2. SpoutOutputCollector
用于expose spout发送(emit) tuples的接口
和bolt的output collector相比, spout的output collector可以指定message-id, 用于spout track该message
emit
List<Integer> emit(String streamId, List<Object> tuple, Object messageId)
emit, 3个参数, 发送到的streamid, tuple, 和message-id
如果streamid为空, 则发送到默认stream, Utils.DEFAULT_STREAM_ID
如果messageid为空, 则spout不会track this message
1个返回值, 最终发送到的task ids
emitDirect
void emitDirect(int taskId, String streamId, List<Object> tuple, Object messageId)
directgrouping, 直接通过taskid指定发送的task
/**
* This output collector exposes the API for emitting tuples from an {@link backtype.storm.topology.IRichSpout}.
* The main difference between this output collector and {@link OutputCollector}
* for {@link backtype.storm.topology.IRichBolt} is that spouts can tag messages with ids so that they can be
* acked or failed later on. This is the Spout portion of Storm's API to
* guarantee that each message is fully processed at least once.
*/
public class SpoutOutputCollector implements ISpoutOutputCollector {
ISpoutOutputCollector _delegate; public SpoutOutputCollector(ISpoutOutputCollector delegate) {
_delegate = delegate;
} /**
* Emits a new tuple to the specified output stream with the given message ID.
* When Storm detects that this tuple has been fully processed, or has failed
* to be fully processed, the spout will receive an ack or fail callback respectively
* with the messageId as long as the messageId was not null. If the messageId was null,
* Storm will not track the tuple and no callback will be received. The emitted values must be
* immutable.
*
* @return the list of task ids that this tuple was sent to
*/
public List<Integer> emit(String streamId, List<Object> tuple, Object messageId) {
return _delegate.emit(streamId, tuple, messageId);
} /**
* Emits a new tuple to the default output stream with the given message ID.
* When Storm detects that this tuple has been fully processed, or has failed
* to be fully processed, the spout will receive an ack or fail callback respectively
* with the messageId as long as the messageId was not null. If the messageId was null,
* Storm will not track the tuple and no callback will be received. The emitted values must be
* immutable.
*
* @return the list of task ids that this tuple was sent to
*/
public List<Integer> emit(List<Object> tuple, Object messageId) {
return emit(Utils.DEFAULT_STREAM_ID, tuple, messageId);
} /**
* Emits a tuple to the default output stream with a null message id. Storm will
* not track this message so ack and fail will never be called for this tuple. The
* emitted values must be immutable.
*/
public List<Integer> emit(List<Object> tuple) {
return emit(tuple, null);
} /**
* Emits a tuple to the specified output stream with a null message id. Storm will
* not track this message so ack and fail will never be called for this tuple. The
* emitted values must be immutable.
*/
public List<Integer> emit(String streamId, List<Object> tuple) {
return emit(streamId, tuple, null);
} /**
* Emits a tuple to the specified task on the specified output stream. This output
* stream must have been declared as a direct stream, and the specified task must
* use a direct grouping on this stream to receive the message. The emitted values must be
* immutable.
*/
public void emitDirect(int taskId, String streamId, List<Object> tuple, Object messageId) {
_delegate.emitDirect(taskId, streamId, tuple, messageId);
} /**
* Emits a tuple to the specified task on the default output stream. This output
* stream must have been declared as a direct stream, and the specified task must
* use a direct grouping on this stream to receive the message. The emitted values must be
* immutable.
*/
public void emitDirect(int taskId, List<Object> tuple, Object messageId) {
emitDirect(taskId, Utils.DEFAULT_STREAM_ID, tuple, messageId);
} /**
* Emits a tuple to the specified task on the specified output stream. This output
* stream must have been declared as a direct stream, and the specified task must
* use a direct grouping on this stream to receive the message. The emitted values must be
* immutable.
*
* <p> Because no message id is specified, Storm will not track this message
* so ack and fail will never be called for this tuple.</p>
*/
public void emitDirect(int taskId, String streamId, List<Object> tuple) {
emitDirect(taskId, streamId, tuple, null);
} /**
* Emits a tuple to the specified task on the default output stream. This output
* stream must have been declared as a direct stream, and the specified task must
* use a direct grouping on this stream to receive the message. The emitted values must be
* immutable.
*
* <p> Because no message id is specified, Storm will not track this message
* so ack and fail will never be called for this tuple.</p>
*/
public void emitDirect(int taskId, List<Object> tuple) {
emitDirect(taskId, tuple, null);
} @Override
public void reportError(Throwable error) {
_delegate.reportError(error);
}
}
Storm-源码分析- spout (backtype.storm.spout)的更多相关文章
- Storm源码分析--Nimbus-data
nimbus-datastorm-core/backtype/storm/nimbus.clj (defn nimbus-data [conf inimbus] (let [forced-schedu ...
- JStorm与Storm源码分析(四)--均衡调度器,EvenScheduler
EvenScheduler同DefaultScheduler一样,同样实现了IScheduler接口, 由下面代码可以看出: (ns backtype.storm.scheduler.EvenSche ...
- JStorm与Storm源码分析(三)--Scheduler,调度器
Scheduler作为Storm的调度器,负责为Topology分配可用资源. Storm提供了IScheduler接口,用户可以通过实现该接口来自定义Scheduler. 其定义如下: public ...
- JStorm与Storm源码分析(二)--任务分配,assignment
mk-assignments主要功能就是产生Executor与节点+端口的对应关系,将Executor分配到某个节点的某个端口上,以及进行相应的调度处理.代码注释如下: ;;参数nimbus为nimb ...
- JStorm与Storm源码分析(一)--nimbus-data
Nimbus里定义了一些共享数据结构,比如nimbus-data. nimbus-data结构里定义了很多公用的数据,请看下面代码: (defn nimbus-data [conf inimbus] ...
- storm源码分析之任务分配--task assignment
在"storm源码分析之topology提交过程"一文最后,submitTopologyWithOpts函数调用了mk-assignments函数.该函数的主要功能就是进行topo ...
- storm源码分析之topology提交过程
storm集群上运行的是一个个topology,一个topology是spouts和bolts组成的图.当我们开发完topology程序后将其打成jar包,然后在shell中执行storm jar x ...
- JStorm与Storm源码分析(五)--SpoutOutputCollector与代理模式
本文主要是解析SpoutOutputCollector源码,顺便分析该类中所涉及的设计模式–代理模式. 首先介绍一下Spout输出收集器接口–ISpoutOutputCollector,该接口主要声明 ...
- Nimbus<三>Storm源码分析--Nimbus启动过程
Nimbus server, 首先从启动命令开始, 同样是使用storm命令"storm nimbus”来启动看下源码, 此处和上面client不同, jvmtype="-serv ...
- Storm-源码分析-acker (backtype.storm.daemon.acker)
backtype.storm.daemon.acker 设计的巧妙在于, 不用分别记录和track, stream过程中所有的tuple, 而只需要track root tuple, 而所有中间过程都 ...
随机推荐
- js中formData的使用
FormData 对象的使用 https://developer.mozilla.org/zh-CN/docs/Web/API/FormData/Using_FormData_Objects http ...
- shared-service.ts
shared-service.ts import { Observable } from 'rxjs/Observable'; import { Injectable } from '@angular ...
- Memcache应用场景介绍,说明[zz]
转于:http://www.cnblogs.com/literoad/archive/2012/12/23/2830178.html 面临的问题 对于高并发高访问的 Web应用程序来说,数据库存取瓶颈 ...
- JUC组件扩展(二)-JAVA并行框架Fork/Join(二):同步和异步
在Fork/Join框架中,提交任务的时候,有同步和异步两种方式. invokeAll()的方法是同步的,也就是任务提交后,这个方法不会返回直到所有的任务都处理完了. fork方法是异步的.也就是你提 ...
- 有关linux磁盘分区优化
Linux中几个重要的目录,这几个目录在ubuntu安装的硬盘分区时,可选择性的特别分区,进行挂载./usr 文件系统中一般不改变的文件,如库,程序./var 文件系统包含会改变的文件./home 文 ...
- Go快速入门
整理一些Go最基本的语法,旨在快速入门. 最简单的hello world package main import "fmt" func main() { fmt.Println(& ...
- python学习之pypandoc
对于程序员来说,文件格式之间的转换是一件非常费劲的事!比如md文件转化为html文件. 于是乎,就有一群牛人搞出了个神器,他就是pandoc. 而python中,对应的第三方模块就是pypandoc. ...
- 天猫 小游戏 24 point
游戏规则:给你四个整数,当然他给的是有解的,然后用' + - * / ( ) ,这几种符号任意组合,使运算结果等于24; 用代码快速解决问题,呵呵... #include<io ...
- PHP学习笔记(9)文件上传
index.php <!doctype html> <html lang="en"> <head> <meta charset=" ...
- 基于nc实现聊天
需要 Netcat(在网络上通过 TCP 或 UDP 读写数据),CentOS 6.x 系统中默认没有安装,经过测试,如果通过 yum 直接安装,运行时会有 “nc: Protocol not ava ...