Problem Description
  Doctor D. are researching for a horrific weapon. The muzzle of the weapon is a circle. When it fires, rays form a cylinder that runs through the circle verticality in both side. If one cylinder of rays touch another, there will be an horrific explosion. Originally, all circles can rotate easily. But for some unknown reasons they can not rotate any more. If these weapon can also make an explosion, then Doctor D. is lucky that he can also test the power of the weapon. If not, he would try to make an explosion by other means. One way is to find a medium to connect two cylinder. But he need to know the minimum length of medium he will prepare. When the medium connect the surface of the two cylinder, it may make an explosion.
 
Input
  The first line contains an integer T, indicating the number of testcases. For each testcase, the first line contains one integer N(1 < N < 30), the number of weapons. Each of the next 3N lines  contains three float numbers. Every 3 lines represent one weapon. The first line represents the coordinates of center of the circle, and the second line and the third line represent two points in the circle which surrounds the center. It is supposed that these three points are not in one straight line. All float numbers are between -1000000 to 1000000.
 
Output
  For each testcase, if there are two cylinder can touch each other, then output 'Lucky', otherwise output then minimum distance of any two cylinders, rounded to two decimals, where distance of two cylinders is the minimum distance of any two point in the surface of two cylinders.
 
题目大意:给多个圆柱,若有任意两个圆柱相交,则输出Lucky,否则输出两个圆柱间的最短距离。
思路:已经算是模板题了,不多解释。
 
代码(0MS):
 #include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <cmath>
using namespace std;
typedef long long LL; const double EPS = 1e-;
const double INF = 1e50;
const double PI = acos(-1.0); inline int sgn(double x) {
return (x > EPS) - (x < EPS);
} struct Point3D {
double x, y, z;
Point3D() {}
Point3D(double x, double y, double z): x(x), y(y), z(z) {}
void read() {
scanf("%lf%lf%lf", &x, &y, &z);
}
double operator * (const Point3D &rhs) const {
return x * rhs.x + y * rhs.y + z * rhs.z;
}
Point3D operator + (const Point3D &rhs) const {
return Point3D(x + rhs.x, y + rhs.y, z + rhs.z);
}
Point3D operator - (const Point3D &rhs) const {
return Point3D(x - rhs.x, y - rhs.y, z - rhs.z);
}
double length() const {
return sqrt(x * x + y * y + z * z);
}
}; struct Line3D {
Point3D st, ed;
Line3D() {}
Line3D(Point3D st, Point3D ed): st(st), ed(ed) {}
}; struct Plane3D {
Point3D a, b, c;
Plane3D() {}
Plane3D(Point3D a, Point3D b, Point3D c): a(a), b(b), c(c) {}
void read() {
a.read(), b.read(), c.read();
}
}; double dist(const Point3D &a, const Point3D &b) {
return (a - b).length();
}
//叉积
Point3D cross(const Point3D &u, const Point3D &v) {
Point3D ret;
ret.x = u.y * v.z - u.z * v.y;
ret.y = u.z * v.x - u.x * v.z;
ret.z = u.x * v.y - u.y * v.x;
return ret;
}
//点到直线距离
double point_to_line(const Point3D &p, const Line3D &l) {
return cross(p - l.st, l.ed - l.st).length() / dist(l.ed, l.st);
}
//求两直线间的距离
double line_to_line(const Line3D u, const Line3D v) {
Point3D n = cross(u.ed - u.st, v.ed - v.st);
return fabs((u.st - v.st) * n) / n.length();
}
//取平面法向量
Point3D vector_of_plane(const Plane3D &s) {
return cross(s.a - s.b, s.b - s.c);
}
//判断两直线是否平行
bool isParallel(const Line3D &u, const Line3D &v) {
return sgn(cross(u.ed - u.st, v.ed - v.st).length()) <= ;
} const int MAXN = ; Plane3D s[MAXN];
Line3D l[MAXN];
double r[MAXN];
int T, n; int main() {
scanf("%d", &T);
while(T--) {
scanf("%d", &n);
for(int i = ; i < n; ++i) s[i].read();
for(int i = ; i < n; ++i) {
Point3D v = vector_of_plane(s[i]);
l[i] = Line3D(s[i].a, s[i].a + v);
r[i] = dist(s[i].a, s[i].b);
}
double ans = INF;
for(int i = ; i < n; ++i) {
for(int j = i + ; j < n; ++j) {
double d;
if(isParallel(l[i], l[j])) d = point_to_line(l[i].st, l[j]);
else d = line_to_line(l[i], l[j]);
ans = min(ans, d - r[i] - r[j]);
}
}
if(sgn(ans) <= ) puts("Lucky");
else printf("%.2f\n", ans);
}
}

HDU 4617 Weapon(三维几何)的更多相关文章

  1. HDU 4617 Weapon 三维计算几何

    题意:给你一些无限长的圆柱,知道圆柱轴心直线(根据他给的三个点确定的平面求法向量即可)与半径,判断是否有圆柱相交.如果没有,输出柱面最小距离. 一共只有30个圆柱,直接暴力一下就行. 判相交/相切:空 ...

  2. hdu 4617 Weapon【异面直线距离——基础三维几何】

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=4617 Weapon Time Limit: 3000/1000 MS (Java/Others)     ...

  3. hdu 4617 Weapon

    http://acm.hdu.edu.cn/showproblem.php?pid=4617 三维几何简单题 多谢高尚博学长留下的模板 代码: #include <iostream> #i ...

  4. HDU 4617 Weapon (简单三维计算几何,异面直线距离)

    Weapon Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Subm ...

  5. hdu 4617 Weapon(叉积)

    大一学弟表示刚学过高数,轻松无压力. 我等学长情何以堪= = 求空间无限延伸的两个圆柱体是否相交,其实就是叉积搞一搞 详细点就是求两圆心的向量在两直线(圆心所在的直线)叉积上的投影 代码略挫,看他的吧 ...

  6. hdu 5839(三维几何)

    Special Tetrahedron Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  7. POJ 3528--Ultimate Weapon(三维凸包)

    Ultimate Weapon Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 2430   Accepted: 1173 ...

  8. HDU - 3584 Cube (三维树状数组 + 区间改动 + 单点求值)

    HDU - 3584 Cube Time Limit: 1000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Subm ...

  9. HDU 3584 Cube --三维树状数组

    题意:给一个三维数组n*n*n,初始都为0,每次有两个操作: 1. 翻转(x1,y1,z1) -> (x2,y2,z2) 0. 查询A[x][y][z] (A为该数组) 解法:树状数组维护操作次 ...

随机推荐

  1. hashMap 和 linkedHashMap 的区别和联系

    直接举例说明. 运行如下例子程序 mport java.util.HashMap; import java.util.Iterator; import java.util.LinkedHashMap; ...

  2. React通过dva-model-extend实现 dva 动态生成 model

    前言 实现通过单个component 单个router通过相应的标识对应产生不同model实现数据包分离,model namespce将会覆盖基础的Model,其中的model[state|subsc ...

  3. 常用模块 - datetime模块

    一.简介 datetime是Python处理日期和时间的标准库. 1.datetime模块中常用的类: 类名 功能说明 date 日期对象,常用的属性有year, month, day time 时间 ...

  4. java实现验证码功能主要代码

    package com.baojuan.servlet; import java.awt.Color;import java.awt.Font;import java.awt.Graphics2D;i ...

  5. jdk11新特性

    JDK 11主要特性一览 jdk11即将在9月25号发布正式版.确定的新特性包括以下17个 181 嵌套类可见性控制 309 动态文件常量 315 改进 Aarch64 Intrinsics 318 ...

  6. layui sleect获取value值

    <div class="layui-form-item"> <label for="username" class="layui-f ...

  7. 20190118-自定义实现replace方法

    1.自定义实现replace方法 Python replace() 方法把字符串中的 old(旧字符串) 替换成 neange(新字符串),如果指定第三个参数max,则替换不超过 max 次.考虑ol ...

  8. hadoop 1.x 集群环境的搭建

    本文主要以个人工作学习总结为主,同时也为了方便更多的兴趣爱好者参与学习交流,现将具体的搭建步骤分享如下: 一.基础环境 1.1 jdk的安装与配置 Hadoop是用Java开发的,Hadoop的编译及 ...

  9. [BZOJ4552][Tjoi2016&Heoi2016]排序(二分答案+线段树)

    二分答案mid,将>=mid的设为1,<mid的设为0,这样排序就变成了区间修改的操作,维护一下区间和即可 然后询问第q个位置的值,为1说明>=mid,以上 时间复杂度O(nlog2 ...

  10. 利用cross-entropy cost代替quadratic cost来获得更好的收敛

    1.从方差代价函数说起(Quadratic cost) 代价函数经常用方差代价函数(即采用均方误差MSE),比如对于一个神经元(单输入单输出,sigmoid函数),定义其代价函数为: 其中y是我们期望 ...