Gap
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 1829   Accepted: 829

Description

Let's play a card game called Gap. 
You have 28 cards labeled with two-digit numbers. The first digit (from 1 to 4) represents the suit of the card, and the second digit (from 1 to 7) represents the value of the card.

First, you shu2e the cards and lay them face up on the table in four rows of seven cards, leaving a space of one card at the extreme left of each row. The following shows an example of initial layout. 

Next, you remove all cards of value 1, and put them in the open space at the left end of the rows: "11" to the top row, "21" to the next, and so on.

Now you have 28 cards and four spaces, called gaps, in four rows and eight columns. You start moving cards from this layout. 

At each move, you choose one of the four gaps and fill it with the successor of the left neighbor of the gap. The successor of a card is the next card in the same suit, when it exists. For instance the successor of "42" is "43", and "27" has no successor.

In the above layout, you can move "43" to the gap at the right of "42", or "36" to the gap at the right of "35". If you move "43", a new gap is generated to the right of "16". You cannot move any card to the right of a card of value 7, nor to the right of a gap.

The goal of the game is, by choosing clever moves, to make four ascending sequences of the same suit, as follows. 

Your task is to find the minimum number of moves to reach the goal layout.

Input

The input starts with a line containing the number of initial layouts that follow.

Each layout consists of five lines - a blank line and four lines which represent initial layouts of four rows. Each row has seven two-digit numbers which correspond to the cards.

Output

For each initial layout, produce a line with the minimum number of moves to reach the goal layout. Note that this number should not include the initial four moves of the cards of value 1. If there is no move sequence from the initial layout to the goal layout, produce "-1".

Sample Input

4

12 13 14 15 16 17 21
22 23 24 25 26 27 31
32 33 34 35 36 37 41
42 43 44 45 46 47 11 26 31 13 44 21 24 42
17 45 23 25 41 36 11
46 34 14 12 37 32 47
16 43 27 35 22 33 15 17 12 16 13 15 14 11
27 22 26 23 25 24 21
37 32 36 33 35 34 31
47 42 46 43 45 44 41 27 14 22 35 32 46 33
13 17 36 24 44 21 15
43 16 45 47 23 11 26
25 37 41 34 42 12 31

Sample Output

0
33
60
-1

Source

 
题意:如题目中图片2所示,每次从表中选择一个数字填入四个空格中的其中一个(能填入该空格的条件是即将填入该空格的数字=该空格左边的数+1)。
问最少需要几次操作,达到图片3的状态
代码:
#include<cstdio>
#include<cstring>
using namespace std;
const int M=;
struct data
{
char s[],e[],p[];
int ans;
}w[];
int id[M],ans;
inline int BKDRHash(char *str)
{
int hash=,q=;
while(++q<)hash=hash*+(*str++);
return((hash&0x7FFFFFFF)%M);
}
inline void insert(char *c,int i)
{
int x=BKDRHash(c);
while(id[x]>=)
{
x+=;
if(x>=M)x%=M;
}
id[x]=i;
}
inline bool cmp(char *p,char *q)
{
for(int i=;i<;++i,++p,++q)
if(*p!=*q)return ;
return ;
}
inline int find(char *c)
{
int x=BKDRHash(c);
while(id[x]>=&&cmp(c,w[id[x]].s))
{
x+=;
if(x>=M)x%=M;
}
return id[x];
}
inline void get(char &a)
{
char ch=getchar();
while (ch<''||ch>'')ch=getchar();
for(a=;ch>=''&&ch<='';ch=getchar())a=a*+ch-;
if((a==)||(a==)||(a==)||(a==))a=;
}
inline void cpy(char *p,char *q,int n)
{
for(int i=;i<n;++i,++p,++q)*p=*q;
}
inline int bfs()
{
int l=,r=,rr=,i,k,s,p,e;
do
{
cpy(w[rr].s,w[++l].s,);
for(i=;i<;++i)
if(w[l].s[(e=w[l].e[i])-]%<&&w[l].s[e-]>)
{
w[rr].s[e]=s=w[l].s[e-]+,w[rr].s[p=w[l].p[s]]=;
if((k=find(w[rr].s))<)
{
++r,++rr,cpy(w[r].e,w[l].e,),cpy(w[r].p,w[l].p,);
w[r].e[i]=p,w[r].p[s]=e,w[r].ans=w[l].ans+;
insert(w[r].s,r);
cpy(w[rr].s,w[l].s,);
}
else w[rr].s[p]=s,w[rr].s[e]=;
if(!k)return w[l].ans+;
}
}while(l<r);
return -;
}
int main()
{
int n,i,j,k;
for(i=;i<;i+=)
for(j=;j<;++j)w[].s[i+j]=(i/+)*+j+;
scanf("%d",&n);
while(n--)
{
memset(id,-,sizeof(id));
insert(w[].s,);
for(i=;i<;i+=)
for(w[].s[i]=(i/+)*+,j=;j<;++j)get(w[].s[i+j]),w[].p[w[].s[i+j]]=i+j;
if(!find(w[].s))printf("0\n");
else
{
for(k=i=;i<;i+=)
for(j=;j<;++j)
if(!w[].s[i+j])w[].e[k++]=i+j;
w[].ans=;
insert(w[].s,);
printf("%d\n",bfs());
}
}
return ;
}

poj2046的更多相关文章

  1. poj分类 很好很有层次感。

    初期: 一.基本算法:      (1)枚举. (poj1753,poj2965)      (2)贪心(poj1328,poj2109,poj2586)      (3)递归和分治法.      ( ...

  2. 【转】POJ题目分类推荐 (很好很有层次感)

    OJ上的一些水题(可用来练手和增加自信) (poj3299,poj2159,poj2739,poj1083,poj2262,poj1503,poj3006,poj2255,poj3094)初期: 一. ...

  3. 【转】ACM训练计划

    [转] POJ推荐50题以及ACM训练方案 -- : 转载自 wade_wang 最终编辑 000lzl POJ 推荐50题 第一类 动态规划(至少6题, 和 必做) 和 (可贪心) (稍难) 第二类 ...

  4. POJ 题目分类(转载)

    Log 2016-3-21 网上找的POJ分类,来源已经不清楚了.百度能百度到一大把.贴一份在博客上,鞭策自己刷题,不能偷懒!! 初期: 一.基本算法: (1)枚举. (poj1753,poj2965 ...

  5. (转)POJ题目分类

    初期:一.基本算法:     (1)枚举. (poj1753,poj2965)     (2)贪心(poj1328,poj2109,poj2586)     (3)递归和分治法.     (4)递推. ...

  6. acm常见算法及例题

    转自:http://blog.csdn.net/hengjie2009/article/details/7540135 acm常见算法及例题  初期:一.基本算法:     (1)枚举. (poj17 ...

  7. poj分类

    初期: 一.基本算法:      (1)枚举. (poj1753,poj2965)      (2)贪心(poj1328,poj2109,poj2586)      (3)递归和分治法.      ( ...

  8. 转载 ACM训练计划

    leetcode代码 利用堆栈:http://oj.leetcode.com/problems/evaluate-reverse-polish-notation/http://oj.leetcode. ...

  9. ACM算法总结及刷题参考

    参考:http://bbs.byr.cn/#!article/ACM_ICPC/11777 OJ上的一些水题(可用来练手和增加自信)(poj3299,poj2159,poj2739,poj1083,p ...

随机推荐

  1. Python-正确使用Unicode

    正确处理文本,特别是正确处理Unicode.是个老生常谈的问题,有时甚至会难倒经验丰富的开发者.并不是因为这个问题很难,而是因为对软件中的文本,开发者没有正确理解一些关键概念及其表示方法.在Stack ...

  2. CSRF攻击原理及测试方法

    CSRF(Cross Site Request Forgery, 跨站域请求伪造)是一种网络的攻击方式,该攻击可以在受害者毫不知情的情况下以受害者名义伪造请求发送给受攻击站点,从而在并未授权的情况下执 ...

  3. jboss 的debug启动4法

    http://xo-tobacoo.iteye.com/blog/684946方式一: 使用myeclipse,全自动化,不再赘述 方式二: eclipse下使用server工具,部署后使用debug ...

  4. Js日常笔记之数组

    1.Array构造函数有一个很大的问题,就是不同的参数,会导致它的行为不一致,es6好像专门为此对数组有升级 因此,不建议使用new Array生成新数组,直接使用数组字面量[...]是更好的做法. ...

  5. Windows+Nginx+IIS做图片分布式存储详细步骤

    最近几天,一直在学习nginx在windows平台下的使用,为了寻找几种大量图片分布式存储而且有相对简单的存储方案 nginx是一种,还找到一种MongoDB GridFS 这两种方案我还是比较中意的 ...

  6. Atitit.隔行换色  变色 css3 结构性伪类选择器

    Atitit.隔行换色  变色 css3 结构性伪类选择器 1.1. css3隔行换色扩展阅读 1 1.2. 结构伪选择器 1 1.3. jQuery 选择器2 1.1. css3隔行换色扩展阅读 原 ...

  7. C#遍历计算机上所有的文件

    class Program { static List<string> allFileName=new List<string>(); static void Main(str ...

  8. Windows 内核(WRK)简介

    引子 WRK 是微软于 2006 年针对教育和学术界开放的 Windows 内核的部分源码,WRK(Windows Research Kernel)也就是 Windows 研究内核,在 WRK 中不仅 ...

  9. WebRTC编译具体介绍

    WebRTC编译具体介绍--记录+转载 原文地址:http://blog.csdn.net/temotemo/article/details/7056581 WebRTC编译 本人环境: 操作系统:X ...

  10. 在32位Centos6.4上安装GraphicsMagick

    安装时,make总是有如下错误,最后几行 /bin/sh ./libtool --tag=CC --mode=link gcc -std=gnu99 -g -O2 -Wall -pthread -ld ...