Gap
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 1829   Accepted: 829

Description

Let's play a card game called Gap. 
You have 28 cards labeled with two-digit numbers. The first digit (from 1 to 4) represents the suit of the card, and the second digit (from 1 to 7) represents the value of the card.

First, you shu2e the cards and lay them face up on the table in four rows of seven cards, leaving a space of one card at the extreme left of each row. The following shows an example of initial layout. 

Next, you remove all cards of value 1, and put them in the open space at the left end of the rows: "11" to the top row, "21" to the next, and so on.

Now you have 28 cards and four spaces, called gaps, in four rows and eight columns. You start moving cards from this layout. 

At each move, you choose one of the four gaps and fill it with the successor of the left neighbor of the gap. The successor of a card is the next card in the same suit, when it exists. For instance the successor of "42" is "43", and "27" has no successor.

In the above layout, you can move "43" to the gap at the right of "42", or "36" to the gap at the right of "35". If you move "43", a new gap is generated to the right of "16". You cannot move any card to the right of a card of value 7, nor to the right of a gap.

The goal of the game is, by choosing clever moves, to make four ascending sequences of the same suit, as follows. 

Your task is to find the minimum number of moves to reach the goal layout.

Input

The input starts with a line containing the number of initial layouts that follow.

Each layout consists of five lines - a blank line and four lines which represent initial layouts of four rows. Each row has seven two-digit numbers which correspond to the cards.

Output

For each initial layout, produce a line with the minimum number of moves to reach the goal layout. Note that this number should not include the initial four moves of the cards of value 1. If there is no move sequence from the initial layout to the goal layout, produce "-1".

Sample Input

4

12 13 14 15 16 17 21
22 23 24 25 26 27 31
32 33 34 35 36 37 41
42 43 44 45 46 47 11 26 31 13 44 21 24 42
17 45 23 25 41 36 11
46 34 14 12 37 32 47
16 43 27 35 22 33 15 17 12 16 13 15 14 11
27 22 26 23 25 24 21
37 32 36 33 35 34 31
47 42 46 43 45 44 41 27 14 22 35 32 46 33
13 17 36 24 44 21 15
43 16 45 47 23 11 26
25 37 41 34 42 12 31

Sample Output

0
33
60
-1

Source

 
题意:如题目中图片2所示,每次从表中选择一个数字填入四个空格中的其中一个(能填入该空格的条件是即将填入该空格的数字=该空格左边的数+1)。
问最少需要几次操作,达到图片3的状态
代码:
#include<cstdio>
#include<cstring>
using namespace std;
const int M=;
struct data
{
char s[],e[],p[];
int ans;
}w[];
int id[M],ans;
inline int BKDRHash(char *str)
{
int hash=,q=;
while(++q<)hash=hash*+(*str++);
return((hash&0x7FFFFFFF)%M);
}
inline void insert(char *c,int i)
{
int x=BKDRHash(c);
while(id[x]>=)
{
x+=;
if(x>=M)x%=M;
}
id[x]=i;
}
inline bool cmp(char *p,char *q)
{
for(int i=;i<;++i,++p,++q)
if(*p!=*q)return ;
return ;
}
inline int find(char *c)
{
int x=BKDRHash(c);
while(id[x]>=&&cmp(c,w[id[x]].s))
{
x+=;
if(x>=M)x%=M;
}
return id[x];
}
inline void get(char &a)
{
char ch=getchar();
while (ch<''||ch>'')ch=getchar();
for(a=;ch>=''&&ch<='';ch=getchar())a=a*+ch-;
if((a==)||(a==)||(a==)||(a==))a=;
}
inline void cpy(char *p,char *q,int n)
{
for(int i=;i<n;++i,++p,++q)*p=*q;
}
inline int bfs()
{
int l=,r=,rr=,i,k,s,p,e;
do
{
cpy(w[rr].s,w[++l].s,);
for(i=;i<;++i)
if(w[l].s[(e=w[l].e[i])-]%<&&w[l].s[e-]>)
{
w[rr].s[e]=s=w[l].s[e-]+,w[rr].s[p=w[l].p[s]]=;
if((k=find(w[rr].s))<)
{
++r,++rr,cpy(w[r].e,w[l].e,),cpy(w[r].p,w[l].p,);
w[r].e[i]=p,w[r].p[s]=e,w[r].ans=w[l].ans+;
insert(w[r].s,r);
cpy(w[rr].s,w[l].s,);
}
else w[rr].s[p]=s,w[rr].s[e]=;
if(!k)return w[l].ans+;
}
}while(l<r);
return -;
}
int main()
{
int n,i,j,k;
for(i=;i<;i+=)
for(j=;j<;++j)w[].s[i+j]=(i/+)*+j+;
scanf("%d",&n);
while(n--)
{
memset(id,-,sizeof(id));
insert(w[].s,);
for(i=;i<;i+=)
for(w[].s[i]=(i/+)*+,j=;j<;++j)get(w[].s[i+j]),w[].p[w[].s[i+j]]=i+j;
if(!find(w[].s))printf("0\n");
else
{
for(k=i=;i<;i+=)
for(j=;j<;++j)
if(!w[].s[i+j])w[].e[k++]=i+j;
w[].ans=;
insert(w[].s,);
printf("%d\n",bfs());
}
}
return ;
}

poj2046的更多相关文章

  1. poj分类 很好很有层次感。

    初期: 一.基本算法:      (1)枚举. (poj1753,poj2965)      (2)贪心(poj1328,poj2109,poj2586)      (3)递归和分治法.      ( ...

  2. 【转】POJ题目分类推荐 (很好很有层次感)

    OJ上的一些水题(可用来练手和增加自信) (poj3299,poj2159,poj2739,poj1083,poj2262,poj1503,poj3006,poj2255,poj3094)初期: 一. ...

  3. 【转】ACM训练计划

    [转] POJ推荐50题以及ACM训练方案 -- : 转载自 wade_wang 最终编辑 000lzl POJ 推荐50题 第一类 动态规划(至少6题, 和 必做) 和 (可贪心) (稍难) 第二类 ...

  4. POJ 题目分类(转载)

    Log 2016-3-21 网上找的POJ分类,来源已经不清楚了.百度能百度到一大把.贴一份在博客上,鞭策自己刷题,不能偷懒!! 初期: 一.基本算法: (1)枚举. (poj1753,poj2965 ...

  5. (转)POJ题目分类

    初期:一.基本算法:     (1)枚举. (poj1753,poj2965)     (2)贪心(poj1328,poj2109,poj2586)     (3)递归和分治法.     (4)递推. ...

  6. acm常见算法及例题

    转自:http://blog.csdn.net/hengjie2009/article/details/7540135 acm常见算法及例题  初期:一.基本算法:     (1)枚举. (poj17 ...

  7. poj分类

    初期: 一.基本算法:      (1)枚举. (poj1753,poj2965)      (2)贪心(poj1328,poj2109,poj2586)      (3)递归和分治法.      ( ...

  8. 转载 ACM训练计划

    leetcode代码 利用堆栈:http://oj.leetcode.com/problems/evaluate-reverse-polish-notation/http://oj.leetcode. ...

  9. ACM算法总结及刷题参考

    参考:http://bbs.byr.cn/#!article/ACM_ICPC/11777 OJ上的一些水题(可用来练手和增加自信)(poj3299,poj2159,poj2739,poj1083,p ...

随机推荐

  1. MAC-Zsh安装与使用——终极Shell

    前言:Zsh可配置性强,用户可以自定义配置,个性化强.Zsh tab补全更强大,该功能可以让我们节约很多时间.Zsh 还有代码高亮功能,使得代码更好看了,显得逼格更高.Zsh 还有很多强大的功能,这里 ...

  2. Python 代码块左移或右移

    (就 IDE 是  PyCharm 来说) 选中代码块: 1)右移:直接 Tab 2)左移:Shift + Tab Python 对代码对齐要求很严格的. Python的对齐方式很重要,对齐方式决定了 ...

  3. php fpm安装curl后,nginx出现connect() to unix:/var/run/php5-fpm.sock failed (13: Permission denied)的错误

    这里选择直接apt-get安装,因为比起自己编译简单多了,不需要自己配置什么 #sudo apt-get install curl libcurl3 libcurl3-dev php5-curl 安装 ...

  4. spring mvc接收参数方式,json格式返回请求数据

    1 使用方法形参使用变量接收提交的数据 2 在方法的形参中使用模型接收数据 3 如果在提交的表单中有多个数据模型,需要创建一个新的Bean,里面的属性是要接收的对象变量. 4 接收提交的日期字符串,转 ...

  5. hbase能否代替mysql

    代志远早年就职网易研究院从事MapReduce与DFS系统的自主研发,后增加支付宝数据平台负责Hadoop与HBase体系的架构设计与二次研发,支付宝流计算与分布式搜索系统的设计和研发,后成为支付宝海 ...

  6. 多线程-BlockingQueue,Array[Linked]BlockingQueue,DelayQueue,PriorityBlockingQueue,SynchronousQueue

    阻塞场景 BlockingQueue阻塞队列,阻塞的情况主要有如下2种: 1. 当队列满了,进行入队操作阻塞 2. 当队列空了,进行出队操作阻塞 阻塞队列主要用在生产者/消费者模式中,下图展示了一个线 ...

  7. 最全面的 Sublime Text 使用指南

    最全面的 Sublime Text 使用指南   摘要(Abstract) 本文系统全面的介绍了Sublime Text,旨在成为最优秀的Sublime Text中文教程. 前言(Prologue) ...

  8. Missing iOS Distribution signing identity for …, 在打包的时候发现证书过期了。

    今天早上 上班发现钥匙串中的全部证书 都 提示此证书签发者无效 Thanks for bringing this to the attention of the community and apolo ...

  9. lseek,fcntl,ioctl函数

    函数说明:每一个已打开的文件都有一个读写位置, 当打开文件时通常其读写位置是指向文件开头, 若是以附加的方式打开文件(如O_APPEND), 则读写位置会指向文件尾. 当read()或write()时 ...

  10. SysTick—系统定时器

    本章参考资料<ARM Cortex™-M4F 技术参考手册> -4.5 章节 SysTick Timer(STK), 和4.48 章节 SHPRx,其中 STK 这个章节有 SysTick ...