Gap
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 1829   Accepted: 829

Description

Let's play a card game called Gap. 
You have 28 cards labeled with two-digit numbers. The first digit (from 1 to 4) represents the suit of the card, and the second digit (from 1 to 7) represents the value of the card.

First, you shu2e the cards and lay them face up on the table in four rows of seven cards, leaving a space of one card at the extreme left of each row. The following shows an example of initial layout. 

Next, you remove all cards of value 1, and put them in the open space at the left end of the rows: "11" to the top row, "21" to the next, and so on.

Now you have 28 cards and four spaces, called gaps, in four rows and eight columns. You start moving cards from this layout. 

At each move, you choose one of the four gaps and fill it with the successor of the left neighbor of the gap. The successor of a card is the next card in the same suit, when it exists. For instance the successor of "42" is "43", and "27" has no successor.

In the above layout, you can move "43" to the gap at the right of "42", or "36" to the gap at the right of "35". If you move "43", a new gap is generated to the right of "16". You cannot move any card to the right of a card of value 7, nor to the right of a gap.

The goal of the game is, by choosing clever moves, to make four ascending sequences of the same suit, as follows. 

Your task is to find the minimum number of moves to reach the goal layout.

Input

The input starts with a line containing the number of initial layouts that follow.

Each layout consists of five lines - a blank line and four lines which represent initial layouts of four rows. Each row has seven two-digit numbers which correspond to the cards.

Output

For each initial layout, produce a line with the minimum number of moves to reach the goal layout. Note that this number should not include the initial four moves of the cards of value 1. If there is no move sequence from the initial layout to the goal layout, produce "-1".

Sample Input

4

12 13 14 15 16 17 21
22 23 24 25 26 27 31
32 33 34 35 36 37 41
42 43 44 45 46 47 11 26 31 13 44 21 24 42
17 45 23 25 41 36 11
46 34 14 12 37 32 47
16 43 27 35 22 33 15 17 12 16 13 15 14 11
27 22 26 23 25 24 21
37 32 36 33 35 34 31
47 42 46 43 45 44 41 27 14 22 35 32 46 33
13 17 36 24 44 21 15
43 16 45 47 23 11 26
25 37 41 34 42 12 31

Sample Output

0
33
60
-1

Source

 
题意:如题目中图片2所示,每次从表中选择一个数字填入四个空格中的其中一个(能填入该空格的条件是即将填入该空格的数字=该空格左边的数+1)。
问最少需要几次操作,达到图片3的状态
代码:
#include<cstdio>
#include<cstring>
using namespace std;
const int M=;
struct data
{
char s[],e[],p[];
int ans;
}w[];
int id[M],ans;
inline int BKDRHash(char *str)
{
int hash=,q=;
while(++q<)hash=hash*+(*str++);
return((hash&0x7FFFFFFF)%M);
}
inline void insert(char *c,int i)
{
int x=BKDRHash(c);
while(id[x]>=)
{
x+=;
if(x>=M)x%=M;
}
id[x]=i;
}
inline bool cmp(char *p,char *q)
{
for(int i=;i<;++i,++p,++q)
if(*p!=*q)return ;
return ;
}
inline int find(char *c)
{
int x=BKDRHash(c);
while(id[x]>=&&cmp(c,w[id[x]].s))
{
x+=;
if(x>=M)x%=M;
}
return id[x];
}
inline void get(char &a)
{
char ch=getchar();
while (ch<''||ch>'')ch=getchar();
for(a=;ch>=''&&ch<='';ch=getchar())a=a*+ch-;
if((a==)||(a==)||(a==)||(a==))a=;
}
inline void cpy(char *p,char *q,int n)
{
for(int i=;i<n;++i,++p,++q)*p=*q;
}
inline int bfs()
{
int l=,r=,rr=,i,k,s,p,e;
do
{
cpy(w[rr].s,w[++l].s,);
for(i=;i<;++i)
if(w[l].s[(e=w[l].e[i])-]%<&&w[l].s[e-]>)
{
w[rr].s[e]=s=w[l].s[e-]+,w[rr].s[p=w[l].p[s]]=;
if((k=find(w[rr].s))<)
{
++r,++rr,cpy(w[r].e,w[l].e,),cpy(w[r].p,w[l].p,);
w[r].e[i]=p,w[r].p[s]=e,w[r].ans=w[l].ans+;
insert(w[r].s,r);
cpy(w[rr].s,w[l].s,);
}
else w[rr].s[p]=s,w[rr].s[e]=;
if(!k)return w[l].ans+;
}
}while(l<r);
return -;
}
int main()
{
int n,i,j,k;
for(i=;i<;i+=)
for(j=;j<;++j)w[].s[i+j]=(i/+)*+j+;
scanf("%d",&n);
while(n--)
{
memset(id,-,sizeof(id));
insert(w[].s,);
for(i=;i<;i+=)
for(w[].s[i]=(i/+)*+,j=;j<;++j)get(w[].s[i+j]),w[].p[w[].s[i+j]]=i+j;
if(!find(w[].s))printf("0\n");
else
{
for(k=i=;i<;i+=)
for(j=;j<;++j)
if(!w[].s[i+j])w[].e[k++]=i+j;
w[].ans=;
insert(w[].s,);
printf("%d\n",bfs());
}
}
return ;
}

poj2046的更多相关文章

  1. poj分类 很好很有层次感。

    初期: 一.基本算法:      (1)枚举. (poj1753,poj2965)      (2)贪心(poj1328,poj2109,poj2586)      (3)递归和分治法.      ( ...

  2. 【转】POJ题目分类推荐 (很好很有层次感)

    OJ上的一些水题(可用来练手和增加自信) (poj3299,poj2159,poj2739,poj1083,poj2262,poj1503,poj3006,poj2255,poj3094)初期: 一. ...

  3. 【转】ACM训练计划

    [转] POJ推荐50题以及ACM训练方案 -- : 转载自 wade_wang 最终编辑 000lzl POJ 推荐50题 第一类 动态规划(至少6题, 和 必做) 和 (可贪心) (稍难) 第二类 ...

  4. POJ 题目分类(转载)

    Log 2016-3-21 网上找的POJ分类,来源已经不清楚了.百度能百度到一大把.贴一份在博客上,鞭策自己刷题,不能偷懒!! 初期: 一.基本算法: (1)枚举. (poj1753,poj2965 ...

  5. (转)POJ题目分类

    初期:一.基本算法:     (1)枚举. (poj1753,poj2965)     (2)贪心(poj1328,poj2109,poj2586)     (3)递归和分治法.     (4)递推. ...

  6. acm常见算法及例题

    转自:http://blog.csdn.net/hengjie2009/article/details/7540135 acm常见算法及例题  初期:一.基本算法:     (1)枚举. (poj17 ...

  7. poj分类

    初期: 一.基本算法:      (1)枚举. (poj1753,poj2965)      (2)贪心(poj1328,poj2109,poj2586)      (3)递归和分治法.      ( ...

  8. 转载 ACM训练计划

    leetcode代码 利用堆栈:http://oj.leetcode.com/problems/evaluate-reverse-polish-notation/http://oj.leetcode. ...

  9. ACM算法总结及刷题参考

    参考:http://bbs.byr.cn/#!article/ACM_ICPC/11777 OJ上的一些水题(可用来练手和增加自信)(poj3299,poj2159,poj2739,poj1083,p ...

随机推荐

  1. 严重: Exception starting filter struts2 Unable to load configuration. - [unknown location]

    一般来说,按照这个流程下来是没有错的:SSH三大框架合辑的搭建步骤 但是,近来的一个测试例子出现了以下这个问题,困扰了许久!! 各种百度&各种问同学,最后请教了张老师后问题得到解决: 1.这种 ...

  2. 效仿盖茨:PPstream创始人的心路历程

    http://www.jianglb.com/2007/08/15/about-ppstream.html “P2P网络视频软件的目标是成为网民肚子里的蛔虫.”PPstream总裁徐伟峰自信地说道.他 ...

  3. DDD~大话目录

    来自:http://www.cnblogs.com/lori/p/3472789.html DDD~DDD从零起步架构说明 DDD~概念中的DDD DDD~microsoft NLayerApp项目中 ...

  4. OpenSSL生成证书详解 如何使用OpenSSL生成自签证书 转载

    原文:http://my.oschina.net/fajar/blog/425478 使用OpenSSL生成自签证书(亲测) 一,前言 读过我博客的小伙伴儿都知道,我一般在前言里面会提到为什么写这篇博 ...

  5. php漏洞修复 禁用函数

    别人利用此PHP函数可以对系统进行相关操作 1.打开php.ini找到 ; http://php.net/disable-functions 2.修改添加内容如下 disable_functions ...

  6. Atitit. html 使用js显示本地图片的设计方案.doc

    Atitit. html 使用js显示本地图片的设计方案.doc 1.  Local mode  是可以的..web模式走有的不能兰.1 2. IE8.0 显示本地图片 img.src=本地图片路径无 ...

  7. Zynq GPIO 中断

    /* * Copyright (c) 2009-2012 Xilinx, Inc. All rights reserved. * * Xilinx, Inc. * XILINX IS PROVIDIN ...

  8. C#生日提醒小工具

    一个很粗糙的版本,就当一个小例子看一下吧, 运行效果如下: 开发环境VS2017,用的WinForm,涉及一点xml,直接上图. 一.项目涉及的文件如下图: 二.每个文件内容: 1.MainForm  ...

  9. 第三篇:python函数

    1.python函数 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 函数能提高应用的模块性,和代码的重复利用率.你已经知道Python提供了许多内建函数,比如print().但你 ...

  10. poj Squares n个点,共能组成多少个正方形 二分 + 哈希

    题目链接:http://poj.org/problem?id=2002 测试数据: 41 00 11 10 090 01 02 00 21 22 20 11 12 14-2 53 70 05 20 有 ...