与第二类有些区别!

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <map>
#include <queue>
#include <sstream>
#include <iostream>
using namespace std;
#define INF 0x3fffffff typedef long long int LL;
#define N 22 LL dp[N][N];
LL sum[N]; int main()
{
//freopen("//home//chen//Desktop//ACM//in.text","r",stdin);
//freopen("//home//chen//Desktop//ACM//out.text","w",stdout);
dp[][]=;
sum[]=;
for(int i=;i<=;i++)
{
for(int j=;j<=i;j++)
{
dp[i][j]=dp[i-][j-]+(i-)*dp[i-][j];
}
}
for(int i=;i<=;i++)
sum[i]=sum[i-]*i;
int T;
scanf("%d",&T);
while(T--)
{
int n,k;
scanf("%d%d",&n,&k);
LL ans=;
for(int i=;i<=k;i++)
ans+=dp[n][i];
for(int i=;i<k;i++)
ans-=dp[n-][i];
printf("%.4lf\n",1.0*(double)ans/sum[n]);
}
return ;
}

hdu3625(第一类斯特林数)的更多相关文章

  1. 【组合数学:第一类斯特林数】【HDU3625】Examining the Rooms

    Examining the Rooms Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  2. HDU3625(SummerTrainingDay05-N 第一类斯特林数)

    Examining the Rooms Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  3. 【HDU 4372】 Count the Buildings (第一类斯特林数)

    Count the Buildings Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  4. 如何快速求解第一类斯特林数--nlog^2n + nlogn

    目录 参考资料 前言 暴力 nlog^2n的做法 nlogn的做法 代码 参考资料 百度百科 斯特林数 学习笔记-by zhouzhendong 前言 首先是因为这道题,才去研究了这个玩意:[2019 ...

  5. 【2019雅礼集训】【CF 960G】【第一类斯特林数】【NTT&多项式】permutation

    目录 题意 输入格式 输出格式 思路 代码 题意 找有多少个长度为n的排列,使得从左往右数,有a个元素比之前的所有数字都大,从右往左数,有b个元素比之后的所有数字都大. n<=2*10^5,a, ...

  6. CF960G Bandit Blues 第一类斯特林数、NTT、分治/倍增

    传送门 弱化版:FJOI2016 建筑师 由上面一题得到我们需要求的是\(\begin{bmatrix} N - 1 \\ A + B - 2 \end{bmatrix} \times \binom ...

  7. 【CF715E】Complete the Permutations(容斥,第一类斯特林数)

    [CF715E]Complete the Permutations(容斥,第一类斯特林数) 题面 CF 洛谷 给定两个排列\(p,q\),但是其中有些位置未知,用\(0\)表示. 现在让你补全两个排列 ...

  8. 【CF960G】Bandit Blues(第一类斯特林数,FFT)

    [CF960G]Bandit Blues(第一类斯特林数,FFT) 题面 洛谷 CF 求前缀最大值有\(a\)个,后缀最大值有\(b\)个的长度为\(n\)的排列个数. 题解 完完全全就是[FJOI] ...

  9. 【Luogu4609】建筑师(第一类斯特林数,组合数学)

    [Luogu4609]建筑师(组合数学) 题面 洛谷 题解 首先发现整个数组一定被最高值切成左右两半,因此除去最高值之后在左右分开考虑. 考虑一个暴力\(dp\) ,设\(f[i][j]\)表示用了\ ...

随机推荐

  1. WPF SL 属性生成器

    在开发WPF 和SL应用的时候通用会用到MVVM模式,每次写到类属性的时候要不断的写属性更新时通知方法,写多了就嫌烦,就手写了个属性生成工具,在属性更新的时候添加了更新通知方法. 工具中支持自定义类对 ...

  2. 2012全球SEO行业调查报告

    这份报告是SEOmoz对每两年一度举办的SEO行业调查进行的分析数据,上次调查是在2010年.该调查,主要围绕SEO从业人员的特征.工作内容时间分配比例.SEO相关消费和预算.对未来市场的看法.seo ...

  3. jQuery国际化插件 jQuery.i18n.properties 【轻量级】

    jQuery.i18n.properties是一款轻量级的jQuery国际化插件,能实现Web前端的国际化. 国际化英文单词为:Internationalization,又称i18n,“i”为单词的第 ...

  4. mybatis中分页查询

    1 如果在查询方法中有多个参数,可以使用map对象将所有数据都存储进去.比如分页查询,需要用到两个参数,可以将这两个参数包装到map中. 例子:分页查询 dao层方法 public List<S ...

  5. ultragrid checkbox

    울트라그리드에 체크박스 넣을 사용하는 속성. cols["checked"].Header.Caption = ""; cols["checked ...

  6. [Yii Framework] Share the session with memcache in Yii

    When developing distributed applications with Yii, naturally, we will face that we have to share the ...

  7. 报错"the microsoft.jet.oledb.4.0 provider is not registered on the local machine"解决方案

    报错提示:"the microsoft.jet.oledb.4.0 provider is not registered on the local machine" 错误起因:wi ...

  8. 基于Verilog语言的FIR滤波【程序和理解】

    一直想找一个简单.清晰.明了的fir滤波器的设计,终于找到了一个可以应用的,和大家分享一下,有助于FPGA新手入门. 1.说道fir滤波器,滤波系数肯定是最重要的,因为后面程序中涉及到滤波系数问题,所 ...

  9. boost thread

    #include <cassert> #include <iostream> #include <boost/ref.hpp> #include <boost ...

  10. CCNA2.0笔记_TCP/IP概述

    主机到主机层(传输层) TCP与UDP UDP的特点 运行于 OSI 模型和 TCP/IP 模型的传输层 为应用程序提供网络层接入而无需为可靠性机制付出多余开销 属无连接协议 提供有限的错误检查 提供 ...