题目描述

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.

Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.

There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了被迫走某一条路,所以她们想建一些新路,使每一对草场之间都会至少有两条相互分离的路径,这样她们就有多一些选择.

每对草场之间已经有至少一条路径.给出所有R(F-1≤R≤10000)条双向路的描述,每条路连接了两个不同的草场,请计算最少的新建道路的数量, 路径由若干道路首尾相连而成.两条路径相互分离,是指两条路径没有一条重合的道路.但是,两条分离的路径上可以有一些相同的草场. 对于同一对草场之间,可能已经有两条不同的道路,你也可以在它们之间再建一条道路,作为另一条不同的道路.

输入输出格式

输入格式:

Line 1: Two space-separated integers: F and R

Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

输出格式:

Line 1: A single integer that is the number of new paths that must be built.

输入输出样例

输入样例#1:

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7
输出样例#1:

2

说明

Explanation of the sample:

One visualization of the paths is:

1 2 3

+---+---+

   |   |
| |

6 +---+---+ 4

/ 5 / / 7 +Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.

1 2 3

+---+---+

:  

6 +---+---+ 4

/ 5 : / :

/ :

7 + - - - - Check some of the routes:

1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2

1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4

3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7

Every pair of fields is, in fact, connected by two routes.

It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

 
做法:
taijan缩点,在缩点后的新图上,如果新点的度为1,那么ans++
最后答案=(ans+1)*2
 
首先,任意两个点之间都有两条道路,那么任意一个点都要在一个环里
任意一个点都在一个环里,有两个思考方向:
1、没有桥(割边)
2、没有度为1的点
先看1,出现一个桥,补一条边,ans=桥的条数,这种方法是错误的
因为一个n条边的链,它有n-1个桥,但是只需要首尾相连就没有桥
所以我们选择2
这样每两个度为一的点,就连一条边,如果单出一个点就再加一条,所以ans=(ans+1)/2
 
为什么要在缩点之后的图上呢?直接统计度为一的点的个数不行吗?
看下面这个图就明白了
 

#include<cstdio>
#include<stack>
#include<algorithm>
#define N 5001
#define M 20011
using namespace std;
int n,m;
int tot=,front[N],to[M],nxt[M];
int dfn[N],low[N],id,bl[N],sum;
int p[M/][],d[N];
stack<int>s;
void add(int u,int v)
{
to[++tot]=v; nxt[tot]=front[u]; front[u]=tot;
to[++tot]=u; nxt[tot]=front[v]; front[v]=tot;
}
void tarjan(int u,int pre)
{
dfn[u]=low[u]=++id;
s.push(u);
for(int i=front[u];i;i=nxt[i])
{
if(i==(pre^)) continue;
if(!dfn[to[i]])
{
tarjan(to[i],i);
low[u]=min(low[u],low[to[i]]);
}
else low[u]=min(low[u],dfn[to[i]]);
}
if(low[u]==dfn[u])
{
sum++;
while(s.top()!=u)
{
bl[s.top()]=sum;
s.pop();
}
bl[s.top()]=sum;
s.pop();
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%d%d",&p[i][],&p[i][]);
add(p[i][],p[i][]);
}
tarjan(,);
for(int i=;i<=m;i++)
if(bl[p[i][]]!=bl[p[i][]]) d[bl[p[i][]]]++,d[bl[p[i][]]]++;
int ans=;
for(int i=;i<=n;i++)
if(d[i]==) ans++;
printf("%d",ans+>>);
}

洛谷P2860 [USACO06JAN]冗余路径Redundant Paths的更多相关文章

  1. 洛谷 P2860 [USACO06JAN]冗余路径Redundant Paths 解题报告

    P2860 [USACO06JAN]冗余路径Redundant Paths 题目描述 为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们 ...

  2. 洛谷P2860 [USACO06JAN]冗余路径Redundant Paths(tarjan求边双联通分量)

    题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...

  3. 洛谷2860 [USACO06JAN]冗余路径Redundant Paths

    原题链接 题意实际上就是让你添加尽量少的边,使得每个点都在至少一个环上. 显然对于在一个边双连通分量里的点已经满足要求,所以可以用\(tarjan\)找边双并缩点. 对于缩点后的树,先讲下我自己的弱鸡 ...

  4. luogu P2860 [USACO06JAN]冗余路径Redundant Paths

    题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1- ...

  5. 【luogu P2860 [USACO06JAN]冗余路径Redundant Paths】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2860 考虑在无向图上缩点. 运用到边双.桥的知识. 缩点后统计度为1的点. 度为1是有一条路径,度为2是有两 ...

  6. luogu P2860 [USACO06JAN]冗余路径Redundant Paths |Tarjan

    题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...

  7. P2860 [USACO06JAN]冗余路径Redundant Paths tarjan

    题目链接 https://www.luogu.org/problemnew/show/P2860 思路 缩点,之后就成了个树一般的东西了 然后(叶子节点+1)/2就是答案,好像贪心的样子,lmc好像讲 ...

  8. P2860 [USACO06JAN]冗余路径Redundant Paths

    题解: 首先要边双缩点这很显然 然后变成树上问题 发现dp,dfs好像不太对 考虑一下度数 发现只要在度数为1的点之间连边 但我好像不太会证明这个东西.. 网上也没有看到比较正确的证明方法和连边策略. ...

  9. LUOGU P2860 [USACO06JAN]冗余路径Redundant Paths (双联通,缩点)

    传送门 解题思路 刚开始是找的桥,后来发现这样不对,因为一条链就可以被卡.后来想到应该缩点后找到度数为1 的点然后两两配对. #include<iostream> #include< ...

随机推荐

  1. mouseover 和 mouseout 事件是可以冒泡的 取消

    mouseover 和 mouseout 事件是可以冒泡的,子元素上触发的事件会冒泡到父元素上.可以改用 mouseleave 和 mouseenter 事件,这两个事件不冒泡.

  2. Linux 150命令之 文件和目录操作命令 ls

    文件和目录操作命令 ls 查看文件和目录查看显示详信息 ls 工具的参数 ls -l 查看文件详细信息 ls -h 查看文件的大小 ls -ld 只查看目录信息 ls –F 给不同文件加上不同标记 l ...

  3. [leetcode-748-Largest Number At Least Twice of Others]

    In a given integer array nums, there is always exactly one largest element. Find whether the largest ...

  4. 往Matlab中添加工具包

    使用Matlab过程中,常常会缺少一些函数包导致无法运行,会显示未定义函数. 假如我要用sigshift( ) 这个移位函数,但Matlab中没有,就会提示错误:未定义函数或变量 'sigshift' ...

  5. HDU 2117 Just a Numble

    http://acm.hdu.edu.cn/showproblem.php?pid=2117 Problem Description Now give you two integers n m, yo ...

  6. dwarf是怎样处理的栈帧?

    dwarf是如何处理的栈帧呢? 首先看下非dwarf的情况是如何处理栈帧的: 1 3623804982590 0x3e90 [0xb0]: PERF_RECORD_SAMPLE(IP, 0x1): 1 ...

  7. 移除 ios 上 input 的默认样式

    input{ -webkit-appearance:none; }

  8. BZOJ 1015 星球大战(并查集)

    正着不好搞,考虑倒着搞.倒着搞就是一个并查集. # include <cstdio> # include <cstring> # include <cstdlib> ...

  9. 【zoj2314】Reactor Cooling 有上下界可行流

    题目描述 The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuc ...

  10. JS面向对象基础讲解(工厂模式、构造函数模式、原型模式、混合模式、动态原型模式)

    什么是面向对象?面向对象是一种思想. 面向对象可以把程序中的关键模块都视为对象, 而模块拥有属性及方法. 这样如果我们把一些属性及方法封装起来,日后使用将非常方便,也可以避免繁琐重复的工作.   工厂 ...