描述

Orz教主的成员为教主建了一个游乐场,在教主的规划下,游乐场有一排n个弹性无敌的跳跃装置,它们都朝着一个方向,对着一个巨大的湖,当人踩上去装置可以带你去这个方向无限远的地方,享受飞行的乐趣。但是等这批装置投入使用时,却发现来玩的人们更喜欢在这些装置上跳来跳去,并且由于这些装置弹性的优势,不但它们能让人向所对的方向能跳很远,也都能向相反方向跳一定的距离。 于是教主想出了个游戏,这n个装置按朝向相反的方向顺序以1..n编号。第i个装置可以跳到1..i-1个装置,且每个装置有一个不一定相同的反方向弹性a[i],代表第i个装置还可以跳到第i+1..i+a[i]个装置。教主指定一个起始的装置,问从这个装置开始,最少需要连续踩几次装置(起始的装置也算在内),可以跳到第n个装置的后方,即若第k个装置有k+a[i]>n,那么从第k个装置就可以跳到第n个装置的后方。

(PS:你可以认为有n+1个装置,即需要求多少次能条到第n+1个装置)

格式

输入格式

输入的第1行包含两个正整数n,m,为装置的数目以及询问的次数。

第2行包含n个正整数,第i个正整数为a[i],即第i个装置向反方向最大跳跃的长度。

第3行包含了m个正整数,为询问从哪一个装置开始,最少要几次跳到第n个的后方。

数字之间用空格隔开。 输出格式 输出包含1行,这一行有m个正整数,对于每一个询问,输出最少需要踩的装置数,数字之间用空格隔开。

行末换行且没有多余的空格。

样例1

样例输入

1

5 5

2 4 1 1 1

1 2 3 4 5

样例输出

1 2 1 2 2 1

限制

对于20%的数据,有n≤10;

对于40%的数据,有n≤100,m≤10;

对于60%的数据,有n≤1000,a[i]≤1000,m≤500;

对于100%的数据,有n≤100000,a[i]≤n,m≤40000。

时限1s

提示 若从第1个装置开始则跳到第2个装置,接着就可以跳到第n个装置的后方。 若从第3个装置开始则同样跳到第2个装置。 若从第4个装置开始可以跳到第2个装置或最后一个装置,接着跳出第n个装置,答案同样为2。

题意:中文题。

思路:不断从左到右,直到找到一个能跳到右边界r外的位置,定它为左边界l,dp[l] = dp[r] + 1,在 l 到 r 间的位置间进行判断,如果某个位置能够跳到右边界外,那么说明该位置可以通过跳到右边界再跳到下一个位置,即步数dp[i] = dp[r] + 1,而如果不能跳到右边界,那么通过左边界跳到右边界,即dp[i]=dp[l]+1,题目的单调性使这样的策略可行。

/** @Date    : 2016-11-18-13.59
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version :
*/
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <stack>
#include <math.h>
#include <queue>
//#include<bits/stdc++.h>
#define LL long long
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e6+2000;
using namespace std;
//high[i] means pi(n/i),low[i] means pi(i)
LL high[340000];
LL low[340000];
LL n;
LL fun()
{
LL i,m,p,s,x;
for(m = 1; m * m <= n; m++)
high[m] = n/m-1;
for(i = 1;i <= m; i++)
low[i] = i-1;
for(p = 2; p <= m; p++)
{
if(low[p] == low[p-1])
continue;
s = min(n/(p*p),m-1);
for(x = 1; x <= s; x++)
{
if(x*p <= m-1)
high[x] -= high[x*p] - low[p-1];
else
high[x] -= low[n/(x*p)] - low[p-1];
}
for(x = m; x >= p*p; x--)
low[x] -= low[x/p] - low[p-1];
}
} int main()
{
while(cin>>n)
{
fun();
cout << high[1] << endl;
}
}

vijos 1471 线性DP+贪心的更多相关文章

  1. $CH5105\ Cookies$ 线性$DP+$贪心

    CH 是很有趣的一道题 : ) Sol 第一反应就是f[i][j]表示前i个小朋友分j块饼干的最小怨气值 但是一个孩子所产生的怨气值并不固定,它与其他孩子获得饼干的情况有关 这里可以用到一个贪心,就是 ...

  2. HDU 1421 搬寝室 (线性dp 贪心预处理)

    搬寝室 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  3. 动态规划_线性dp

    https://www.cnblogs.com/31415926535x/p/10415694.html 线性dp是很基础的一种动态规划,,经典题和他的变种有很多,比如两个串的LCS,LIS,最大子序 ...

  4. DP基础(线性DP)总结

    DP基础(线性DP)总结 前言:虽然确实有点基础......但凡事得脚踏实地地做,基础不牢,地动山摇,,,嗯! LIS(最长上升子序列) dp方程:dp[i]=max{dp[j]+1,a[j]< ...

  5. 非常完整的线性DP及记忆化搜索讲义

    基础概念 我们之前的课程当中接触了最基础的动态规划. 动态规划最重要的就是找到一个状态和状态转移方程. 除此之外,动态规划问题分析中还有一些重要性质,如:重叠子问题.最优子结构.无后效性等. 最优子结 ...

  6. 线性DP 学习笔记

    前言:线性DP是DP中最基础的.趁着这次复习认真学一下,打好基础. ------------------ 一·几点建议 1.明确状态的定义 比如:$f[i]$的意义是已经处理了前$i个元素,还是处理第 ...

  7. LightOJ1044 Palindrome Partitioning(区间DP+线性DP)

    问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...

  8. Codeforces 176B (线性DP+字符串)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...

  9. hdu1712 线性dp

    //Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...

随机推荐

  1. [leetcode-784-Letter Case Permutation]

    Given a string S, we can transform every letter individually to be lowercase or uppercase to create ...

  2. POJ 1228 Grandpa's Estate(凸包唯一性判断)

    Description Being the only living descendant of his grandfather, Kamran the Believer inherited all o ...

  3. Hybrid APP基础篇(五)->JSBridge实现示例

    说明 JSBridge实现示例 目录 前言 参考来源 楔子 JS实现部分 说明 实现 Android实现部分 说明 JSBridge类 实现 Callback类 实现 Webview容器关键代码 实现 ...

  4. 针对“来用”团队项目之NABC分析

    本项目特点之一:扩展性强 NABC分析: N(need):我们这个开发的这个软件主要是集娱乐软件和实用工具于一身的大容器,这里面有很多应用程序,针对不同用户需要,至少有一款应用程序能够满足用户的需要, ...

  5. JavaScript初探系列之Ajax应用

    一 什么是Ajax Ajax是(Asynchronous JavaScript And XML)是异步的JavaScript和xml.也就是异步请求更新技术.Ajax是一种对现有技术的一种新的应用,不 ...

  6. alpha-4

    前言 失心疯病源4 团队代码管理github 站立会议 队名:PMS 530雨勤(组长) 今天完成了那些任务 19:00~21:50 利用背景相减法完成背景构建与更新模块,查找关于blob更多的论文资 ...

  7. jconsole工具监控数据分析

    当Jconsole连接成功后,它从JMX获取信息,我们便可以在里面监控具体的内容.Jconsole能捕获到以下信息: 概述 - JVM概述和一些监控变量的信息 内存 - 内存的使用信息 线程 - 线程 ...

  8. sublime Text3 如何自动排版代码

    安装 html beautiful 然后按ctrl+shift+alt+f

  9. windows下apache+php安装

    1.安装apache 通过exe安装,如果80端口被占用,修改httpd.conf中的Listen,然后再次用exe安装,选择repaire 2.安装php 解压php包,添加系统变量 path,加上 ...

  10. [剑指Offer] 48.不用加减乘除做加法

    题目描述 写一个函数,求两个整数之和,要求在函数体内不得使用+.-.*./四则运算符号. [思路] 首先看十进制是如何做的: 5+7=12,三步走第一步:相加各位的值,不算进位,得到2.第二步:计算进 ...