Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml

在Linear Regression部分出现了一些新的名词,这些名词在后续课程中会频繁出现:

Cost Function Linear Regression Gradient Descent Normal Equation Feature Scaling Mean normalization
损失函数 线性回归 梯度下降 正规方程 特征归一化 均值标准化

Model Representation

  • m: number of training examples
  • x(i): input (features) of ith training example
  • xj(i): value of feature j in ith training example
  • y(i): “output” variable / “target” variable of ith training example
  • n: number of features
  • θ: parameters
  • Hypothesis: hθ(x) = θ0 + θ1x1 + θ2x2 + … +θnxn

Cost Function

  IDEA: Choose θso that hθ(x) is close to y for our training examples (x, y).

A.Linear Regression with One Variable Cost Function

Cost Function:    

Goal:    

Contour Plot:

B.Linear Regression with Multiple Variable Cost Function

Cost Function:  

Goal:   


Gradient Descent 

Outline

Gradient Descent Algorithm

迭代过程收敛图可能如下:

(此为等高线图,中间为最小值点,图中蓝色弧线为可能的收敛路径。)

Learning Rate α:

1) If α is too small, gradient descent can be slow to converge;

2) If α is too large, gradient descent may not decrease on every iteration or may not converge;

3) For sufficiently small α , J(θ) should decrease on every iteration;

Choose Learning Rate α: Debug, 0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1, 0.3, 0.6, 1.0;

“Batch” Gradient Descent: Each step of gradient descent uses all the training examples;

“Stochastic” gradient descent: Each step of gradient descent uses only one training examples.


Normal Equation

IDEA: Method to solve for θ analytically.

 for every j, then   

Restriction: Normal Equation does not work when (XTX) is non-invertible.

PS: 当矩阵为满秩矩阵时,该矩阵可逆。列向量(feature)线性无关且行向量(样本)线性无关的个数大于列向量的个数(特征个数n).


Gradient Descent Algorithm VS. Normal Equation 

Gradient Descent:

  • Need to choose α;
  • Needs many iterations;
  • Works well even when n is large; (n > 1000 is appropriate)

Normal Equation:

  • No need to choose α;
  • Don’t need to iterate;
  • Need to compute (XTX)-1 ;
  • Slow if n is very large. (n < 1000 is OK)

Feature Scaling

IDEA: Make sure features are on a similar scale.

好处: 减少迭代次数,有利于快速收敛

Example: If we need to get every feature into approximately a -1 ≤ xi ≤ 1 range, feature values located in [-3, 3] or [-1/3, 1/3] fields are acceptable.

Mean normalization:  


HOMEWORK

好了,既然看完了视频课程,就来做一下作业吧,下面是Linear Regression部分作业的核心代码:

1.computeCost.m/computeCostMulti.m

J=/(*m)*sum((theta'*X'-y').^2);

2.gradientDescent.m/gradientDescentMulti.m

h=X*theta-y;
v=X'*h;
v=v*alpha/m;
theta1=theta;
theta=theta-v;

(原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Linear Regression的更多相关文章

  1. (原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization

    coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regressio ...

  2. (原创)Stanford Machine Learning (by Andrew NG) --- (week 10) Large Scale Machine Learning & Application Example

    本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以 ...

  3. (原创)Stanford Machine Learning (by Andrew NG) --- (week 8) Clustering & Dimensionality Reduction

    本周主要介绍了聚类算法和特征降维方法,聚类算法包括K-means的相关概念.优化目标.聚类中心等内容:特征降维包括降维的缘由.算法描述.压缩重建等内容.coursera上面Andrew NG的Mach ...

  4. (原创)Stanford Machine Learning (by Andrew NG) --- (week 7) Support Vector Machines

    本栏目内容来源于Andrew NG老师讲解的SVM部分,包括SVM的优化目标.最大判定边界.核函数.SVM使用方法.多分类问题等,Machine learning课程地址为:https://www.c ...

  5. (原创)Stanford Machine Learning (by Andrew NG) --- (week 9) Anomaly Detection&Recommender Systems

    这部分内容来源于Andrew NG老师讲解的 machine learning课程,包括异常检测算法以及推荐系统设计.异常检测是一个非监督学习算法,用于发现系统中的异常数据.推荐系统在生活中也是随处可 ...

  6. (原创)Stanford Machine Learning (by Andrew NG) --- (week 4) Neural Networks Representation

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了 ...

  7. (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Introduction

    最近学习了coursera上面Andrew NG的Machine learning课程,课程地址为:https://www.coursera.org/course/ml 在Introduction部分 ...

  8. (原创)Stanford Machine Learning (by Andrew NG) --- (week 5) Neural Networks Learning

    本栏目内容来自Andrew NG老师的公开课:https://class.coursera.org/ml/class/index 一般而言, 人工神经网络与经典计算方法相比并非优越, 只有当常规方法解 ...

  9. (原创)Stanford Machine Learning (by Andrew NG) --- (week 6) Advice for Applying Machine Learning & Machine Learning System Design

    (1) Advice for applying machine learning Deciding what to try next 现在我们已学习了线性回归.逻辑回归.神经网络等机器学习算法,接下来 ...

随机推荐

  1. 【shell】shell编程(六)-shell函数的应用

    linux shell 可以用户定义函数,然后在shell脚本中可以随便调用. shell中函数的定义格式如下: [ function ] funname [()] { action; [return ...

  2. 第一章: 文件句柄转化为 typeglob/glob 与文件句柄检测

    #为了使在子例程中传递文件句柄不出问题 #我们要把文件句柄转为glob或typeglob #转为glob $fd = *MY_FILE; #转为typeblog $fd = \*MY_FILE; #两 ...

  3. YUV颜色编码解析(转)

    原文转自 https://www.jianshu.com/p/a91502c00fb0

  4. Django-【template】自定义过滤器和自定义标签

      模板语言内置的过滤器和标签比较少,往往会遇到无法满足需求的情况,所以需要我们来自定义.自定义filter和simple_tag在项目中很常用   a.首先检查settings下面INSTALLED ...

  5. 调试应用程序(Debugging Applications)

    调试应用程序(Debugging Applications)¶ Phalcon中提供了提供了几种调试级别即通知,错误和异常. 异常类 Exception class 提供了错误发生时的一些常用的调试信 ...

  6. GNU Readline 库及编程简介【转】

    转自:https://www.cnblogs.com/hazir/p/instruction_to_readline.html 用过 Bash 命令行的一定知道,Bash 有几个特性: TAB 键可以 ...

  7. python基础===如何优雅的写代码(转自网络)

    本文是Raymond Hettinger在2013年美国PyCon演讲的笔记(视频, 幻灯片). 示例代码和引用的语录都来自Raymond的演讲.这是我按我的理解整理出来的,希望你们理解起来跟我一样顺 ...

  8. smb windows中使用的文件共享协议(主要用于与windows互通)

    主要是samba服务. SMB协议又成为CIFS(Common Internet File System)协议 samba服务功能: 1文件共享 2打印共享 3加入windows2000/2003/2 ...

  9. mac date 和 Linux date实现从指定时间开始循环

    Linux date begin="2016-01-01" ; i < ; i++ )); do current=$(date -d "$i day $begin& ...

  10. DevExpress控件-GridControl根据条件改变单元格(Dev GridControl 单元格着色)

    DevExpress控件-GridControl根据条件改变单元格颜色,如下图: 解决办法:可以参考:http://www.cnblogs.com/zeroone/p/4311191.html 第一步 ...