(原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Linear Regression
Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml
在Linear Regression部分出现了一些新的名词,这些名词在后续课程中会频繁出现:
| Cost Function | Linear Regression | Gradient Descent | Normal Equation | Feature Scaling | Mean normalization |
| 损失函数 | 线性回归 | 梯度下降 | 正规方程 | 特征归一化 | 均值标准化 |
Model Representation
- m: number of training examples
- x(i): input (features) of ith training example
- xj(i): value of feature j in ith training example
- y(i): “output” variable / “target” variable of ith training example
- n: number of features
- θ: parameters
- Hypothesis: hθ(x) = θ0 + θ1x1 + θ2x2 + … +θnxn
Cost Function
IDEA: Choose θso that hθ(x) is close to y for our training examples (x, y).
A.Linear Regression with One Variable Cost Function
Cost Function: 
Goal: 
Contour Plot:

B.Linear Regression with Multiple Variable Cost Function
Cost Function: 
Goal: 
Gradient Descent
Outline

Gradient Descent Algorithm

迭代过程收敛图可能如下:

(此为等高线图,中间为最小值点,图中蓝色弧线为可能的收敛路径。)
Learning Rate α:
1) If α is too small, gradient descent can be slow to converge;
2) If α is too large, gradient descent may not decrease on every iteration or may not converge;
3) For sufficiently small α , J(θ) should decrease on every iteration;
Choose Learning Rate α: Debug, 0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1, 0.3, 0.6, 1.0;
“Batch” Gradient Descent: Each step of gradient descent uses all the training examples;
“Stochastic” gradient descent: Each step of gradient descent uses only one training examples.
Normal Equation
IDEA: Method to solve for θ analytically.
for every j, then 
Restriction: Normal Equation does not work when (XTX) is non-invertible.
PS: 当矩阵为满秩矩阵时,该矩阵可逆。列向量(feature)线性无关且行向量(样本)线性无关的个数大于列向量的个数(特征个数n).
Gradient Descent Algorithm VS. Normal Equation
Gradient Descent:
- Need to choose α;
- Needs many iterations;
- Works well even when n is large; (n > 1000 is appropriate)
Normal Equation:
- No need to choose α;
- Don’t need to iterate;
- Need to compute (XTX)-1 ;
- Slow if n is very large. (n < 1000 is OK)
Feature Scaling
IDEA: Make sure features are on a similar scale.
好处: 减少迭代次数,有利于快速收敛
Example: If we need to get every feature into approximately a -1 ≤ xi ≤ 1 range, feature values located in [-3, 3] or [-1/3, 1/3] fields are acceptable.
Mean normalization: 
HOMEWORK
好了,既然看完了视频课程,就来做一下作业吧,下面是Linear Regression部分作业的核心代码:
1.computeCost.m/computeCostMulti.m
J=/(*m)*sum((theta'*X'-y').^2);
2.gradientDescent.m/gradientDescentMulti.m
h=X*theta-y;
v=X'*h;
v=v*alpha/m;
theta1=theta;
theta=theta-v;
(原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Linear Regression的更多相关文章
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization
coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regressio ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 10) Large Scale Machine Learning & Application Example
本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 8) Clustering & Dimensionality Reduction
本周主要介绍了聚类算法和特征降维方法,聚类算法包括K-means的相关概念.优化目标.聚类中心等内容:特征降维包括降维的缘由.算法描述.压缩重建等内容.coursera上面Andrew NG的Mach ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 7) Support Vector Machines
本栏目内容来源于Andrew NG老师讲解的SVM部分,包括SVM的优化目标.最大判定边界.核函数.SVM使用方法.多分类问题等,Machine learning课程地址为:https://www.c ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 9) Anomaly Detection&Recommender Systems
这部分内容来源于Andrew NG老师讲解的 machine learning课程,包括异常检测算法以及推荐系统设计.异常检测是一个非监督学习算法,用于发现系统中的异常数据.推荐系统在生活中也是随处可 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 4) Neural Networks Representation
Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Introduction
最近学习了coursera上面Andrew NG的Machine learning课程,课程地址为:https://www.coursera.org/course/ml 在Introduction部分 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 5) Neural Networks Learning
本栏目内容来自Andrew NG老师的公开课:https://class.coursera.org/ml/class/index 一般而言, 人工神经网络与经典计算方法相比并非优越, 只有当常规方法解 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 6) Advice for Applying Machine Learning & Machine Learning System Design
(1) Advice for applying machine learning Deciding what to try next 现在我们已学习了线性回归.逻辑回归.神经网络等机器学习算法,接下来 ...
随机推荐
- 【shell】shell编程(六)-shell函数的应用
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用. shell中函数的定义格式如下: [ function ] funname [()] { action; [return ...
- 第一章: 文件句柄转化为 typeglob/glob 与文件句柄检测
#为了使在子例程中传递文件句柄不出问题 #我们要把文件句柄转为glob或typeglob #转为glob $fd = *MY_FILE; #转为typeblog $fd = \*MY_FILE; #两 ...
- YUV颜色编码解析(转)
原文转自 https://www.jianshu.com/p/a91502c00fb0
- Django-【template】自定义过滤器和自定义标签
模板语言内置的过滤器和标签比较少,往往会遇到无法满足需求的情况,所以需要我们来自定义.自定义filter和simple_tag在项目中很常用 a.首先检查settings下面INSTALLED ...
- 调试应用程序(Debugging Applications)
调试应用程序(Debugging Applications)¶ Phalcon中提供了提供了几种调试级别即通知,错误和异常. 异常类 Exception class 提供了错误发生时的一些常用的调试信 ...
- GNU Readline 库及编程简介【转】
转自:https://www.cnblogs.com/hazir/p/instruction_to_readline.html 用过 Bash 命令行的一定知道,Bash 有几个特性: TAB 键可以 ...
- python基础===如何优雅的写代码(转自网络)
本文是Raymond Hettinger在2013年美国PyCon演讲的笔记(视频, 幻灯片). 示例代码和引用的语录都来自Raymond的演讲.这是我按我的理解整理出来的,希望你们理解起来跟我一样顺 ...
- smb windows中使用的文件共享协议(主要用于与windows互通)
主要是samba服务. SMB协议又成为CIFS(Common Internet File System)协议 samba服务功能: 1文件共享 2打印共享 3加入windows2000/2003/2 ...
- mac date 和 Linux date实现从指定时间开始循环
Linux date begin="2016-01-01" ; i < ; i++ )); do current=$(date -d "$i day $begin& ...
- DevExpress控件-GridControl根据条件改变单元格(Dev GridControl 单元格着色)
DevExpress控件-GridControl根据条件改变单元格颜色,如下图: 解决办法:可以参考:http://www.cnblogs.com/zeroone/p/4311191.html 第一步 ...