Codeforces Round #345 (Div. 1) E. Clockwork Bomb 并查集
E. Clockwork Bomb
题目连接:
http://www.codeforces.com/contest/650/problem/E
Description
My name is James diGriz, I'm the most clever robber and treasure hunter in the whole galaxy. There are books written about my adventures and songs about my operations, though you were able to catch me up in a pretty awkward moment.
I was able to hide from cameras, outsmart all the guards and pass numerous traps, but when I finally reached the treasure box and opened it, I have accidentally started the clockwork bomb! Luckily, I have met such kind of bombs before and I know that the clockwork mechanism can be stopped by connecting contacts with wires on the control panel of the bomb in a certain manner.
I see n contacts connected by n - 1 wires. Contacts are numbered with integers from 1 to n. Bomb has a security mechanism that ensures the following condition: if there exist k ≥ 2 contacts c1, c2, ..., ck forming a circuit, i. e. there exist k distinct wires between contacts c1 and c2, c2 and c3, ..., ck and c1, then the bomb immediately explodes and my story ends here. In particular, if two contacts are connected by more than one wire they form a circuit of length 2. It is also prohibited to connect a contact with itself.
On the other hand, if I disconnect more than one wire (i. e. at some moment there will be no more than n - 2 wires in the scheme) then the other security check fails and the bomb also explodes. So, the only thing I can do is to unplug some wire and plug it into a new place ensuring the fact that no circuits appear.
I know how I should put the wires in order to stop the clockwork. But my time is running out! Help me get out of this alive: find the sequence of operations each of which consists of unplugging some wire and putting it into another place so that the bomb is defused.
Input
The first line of the input contains n (2 ≤ n ≤ 500 000), the number of contacts.
Each of the following n - 1 lines contains two of integers xi and yi (1 ≤ xi, yi ≤ n, xi ≠ yi) denoting the contacts currently connected by the i-th wire.
The remaining n - 1 lines contain the description of the sought scheme in the same format.
It is guaranteed that the starting and the ending schemes are correct (i. e. do not contain cicuits nor wires connecting contact with itself).
Output
The first line should contain k (k ≥ 0) — the minimum number of moves of unplugging and plugging back some wire required to defuse the bomb.
In each of the following k lines output four integers ai, bi, ci, di meaning that on the i-th step it is neccesary to unplug the wire connecting the contacts ai and bi and plug it to the contacts ci and di. Of course the wire connecting contacts ai and bi should be present in the scheme.
If there is no correct sequence transforming the existing scheme into the sought one, output -1.
Sample Input
3
1 2
2 3
1 3
3 2
Sample Output
1
1 2 1 3
Hint
题意
给你两棵树,你只能操作第一棵树,你每次操作是删除一条边,加一条边
但是都不能构成环,然后问你最少多少步。
题解:
可以强行用LCT做动态最小生成树无脑肝过去就好了。
我推荐rng58的做法:
我们从第一棵树的dfs顺序开始考虑,做到第u个点了,v是u的父亲,如果边(v,u)存在在第二棵树,显然我们就不用动这条边。否则的话,我们将u点连向第二棵树u点的父亲fa[u]就好了。
现在有一个问题,如果第二棵树中u点已经连了父亲fa[u]了,怎么办?
把(u,w)这条边变成(find(u),fa[find(u)])就好了。find是并查集,找到第一个在第一棵树不和自己第二棵树fa[u]相连接的点。
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 5e5+7;
vector<int> E[2][maxn];
int fa[2][maxn];
int father[maxn];
int tot=0;
int ans[maxn][4];
void addans(int x,int y,int z,int p)
{
ans[tot][0]=x,ans[tot][1]=y,ans[tot][2]=z,ans[tot][3]=p;
tot++;
}
int fi(int u){
return u != father[u] ? father[u] = fi( father[u] ) : u;
}
bool check(int id,int x,int y)
{
if(x==0||y==0)return false;
if(fa[id][x]==y||fa[id][y]==x)return true;
return false;
}
void dfs(int id,int x,int f)
{
fa[id][x]=f;
for(int i=0;i<E[id][x].size();i++)
{
int v = E[id][x][i];
if(v==f)continue;
dfs(id,v,x);
}
}
void solve(int x,int f)
{
for(int i=0;i<E[0][x].size();i++)
{
int v = E[0][x][i];
if(v==f)continue;
solve(v,x);
if(fa[1][v]!=x&&fa[1][x]!=v)
{
int p = fi(v);
addans(x,v,p,fa[1][p]);
}
}
}
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<n;i++)
{
int x,y;scanf("%d%d",&x,&y);
E[0][x].push_back(y);
E[0][y].push_back(x);
}
for(int i=1;i<n;i++)
{
int x,y;scanf("%d%d",&x,&y);
E[1][x].push_back(y);
E[1][y].push_back(x);
}
dfs(0,1,0);
dfs(1,1,0);
for(int i=1;i<=n;i++)
{
if(!check(0,i,fa[1][i]))
father[i]=i;
else
father[i]=fa[1][i];
}
solve(1,0);
cout<<tot<<endl;
for(int i=0;i<tot;i++,cout<<endl)
for(int j=0;j<4;j++)
printf("%d ",ans[i][j]);
}
Codeforces Round #345 (Div. 1) E. Clockwork Bomb 并查集的更多相关文章
- Codeforces Round #345 (Div. 2) E. Table Compression 并查集
E. Table Compression 题目连接: http://www.codeforces.com/contest/651/problem/E Description Little Petya ...
- Codeforces Round #345 (Div. 2) E. Table Compression 并查集+智商题
E. Table Compression time limit per test 4 seconds memory limit per test 256 megabytes input standar ...
- Codeforces Round #345 (Div. 1) C. Table Compression (并查集)
Little Petya is now fond of data compression algorithms. He has already studied gz, bz, zip algorith ...
- Codeforces Round #245 (Div. 2) B. Balls Game 并查集
B. Balls Game Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/430/problem ...
- Codeforces Round #603 (Div. 2) D. Secret Passwords 并查集
D. Secret Passwords One unknown hacker wants to get the admin's password of AtForces testing system, ...
- Codeforces Round #600 (Div. 2) D题【并查集+思维】
题意:给你n个点,m条边,然后让你使得这个这个图成为一个协和图,需要加几条边.协和图就是,如果两个点之间有一条边,那么左端点与这之间任意一个点之间都要有条边. 思路:通过并查集不断维护连通量的最大编号 ...
- Codeforces Round #600 (Div. 2) - D. Harmonious Graph(并查集)
题意:对于一张图,如果$a$与$b$连通,则对于任意的$c(a<c<b)$都有$a$与$c$连通,则称该图为和谐图,现在给你一张图,问你最少添加多少条边使图变为和谐图. 思路:将一个连通块 ...
- Codeforces Round #582 (Div. 3) G. Path Queries (并查集计数)
题意:给你带边权的树,有\(m\)次询问,每次询问有多少点对\((u,v)\)之间简单路径上的最大边权不超过\(q_i\). 题解:真的想不到用最小生成树来写啊.... 我们对边权排序,然后再对询问的 ...
- cf之路,1,Codeforces Round #345 (Div. 2)
cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅..... ...
随机推荐
- 2017-2018-1 20179205《Linux内核原理与设计》第九周作业
<Linux内核原理与设计>第九周作业 视频学习及代码分析 一.进程调度时机与进程的切换 不同类型的进程有不同的调度需求,第一种分类:I/O-bound 会频繁的进程I/O,通常会花费很多 ...
- TCP之listen&backlog
1. listen函数: #include <sys/socket.h> int listen(int sockfd, int backlog); ret-成功返回0 失败返回- list ...
- Microsoft Security Essential: 微软安全软件
Microsoft Security Essential: 微软安全软件 这个杀毒软件终身免费
- iOS一个项目开始创建, 部署到git服务器
在做iOS开发时, 最开始可能你的经理部署项目, 所以你不会插手, 只是直接从git上clone下来然后就开始撸码, 如果有一天你做经理了, 你怎么去部署一个项目呢, 下面我来过一遍流程 1. 首先需 ...
- seq和{ }生成序列
基本用法 [root@C ~]# seq 5 1 2 3 4 5 [root@C ~]# echo {1..5} 1 2 3 4 5 #步进输出 [root@C ~]# seq 1 2 5 1 3 5 ...
- P2511 [HAOI2008]木棍分割
目录 Description Solution Code Description 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, ...
- linux删除乱码文件[转载]
一些乱码文件不可以通过普通的rm命令进行管理.可以通过删除i节点的方式删除. [root@192_168_100_35 musicwap]# ls??,?K?k?ͨa*.?J]?k?Φ??P???Z? ...
- P1466 集合 Subset Sums(01背包求填充方案数)
题目链接:https://www.luogu.org/problem/show?pid=1466 题目大意:对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合, ...
- mysql:视图、触发器、事务、存储、函数、流程控制
阅读目录 一 视图 二 触发器 三 事务 四 存储过程 五 函数 六 流程控制 回到顶部 一 视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只 ...
- AC日记——[SCOI2009]游戏 bzoj 1025
[SCOI2009]游戏 思路: 和为n的几个数最小公倍数有多少种. dp即可: 代码: #include <bits/stdc++.h> using namespace std; #de ...