四道简单DP
DP类题目找到子问题(状态),然后找到转移方程,就OK
#dp
#likes matrixchain
#according to two point's distance to recurrence
class Solution:
# @return a string
def longestPalindrome(self, s):
length = len(s)
p = [[0 for col in range(length)] for row in range(length)]
for i in range(len(s)):
p[i][i] = 1
if(i<(length-1) and s[i] == s[i+1]):
maxlenth = 2
p[i][i+1] = 1
start = i
for i in range(3,length+1):
for j in range(length-i+1):
k = j + i - 1
if(s[j]==s[k] and p[j+1][k-1] == 1):
maxlenth = i
p[j][k] = 1
start = j
return s[start:start+maxlenth] if __name__ == '__main__':
s = Solution()
test_str = 'abcba'
print s.longestPalindrome(test_str)
#dp least number coins
#one:overlapping subproblem
#two:optimal substructure
class Solution:
# @return a string
def least_number_coin(self, s, v):
#first initialization
min_number = [1000000]*(s+1)
min_number[0] = 0
#And then,recurrence
#time need O(n^2),and additional time O(n) to save the subproblem's temp solution
for i in range(1,s+1):
for j in range(len(v)):
print i,v[j]
if(v[j]<=i and (min_number[i-v[j]]+1 < min_number[i])):
min_number[i] = min_number[i-v[j]]+1
print min_number
return min_number[s]
if __name__ == '__main__':
s = Solution()
money = 11
v = [1,3,5]
print s.least_number_coin(money,v)
#dp
#time O(n^2),addtional O(n) to save temp result
class Solution:
# @return a string
def LIS(self,v):
print v
d = [1]*(len(v))
print d
for i in range(len(v)):
for j in range(i):
print i,j
if (v[j]<=v[i] and d[j]+1>d[i]):
d[i] = d[j]+1
print d
print max(d)
if __name__ == '__main__':
s = Solution()
v = [5,3,4,8,6,7]
s.LIS(v)
#dp
class Solution:
# @return a string
def max_number_apples(self, apples, n, m):
print apples
s = [[0 for col in range(m)] for row in range(n)]
for i in range(n):
for j in range(m):
if(i==0 and j==0):
s[i][j] = apples[0][0]
elif(i==0 and j>0):
s[i][j] = s[i][j-1]+apples[i][j]
elif(j==0 and i>0):
s[i][j] = s[i-1][j] + apples[i][j]
else:
if(s[i-1][j]>s[i][j-1]):
s[i][j] = s[i-1][j] + apples[i][j]
else:
s[i][j] = s[i][j-1] + apples[i][j]
print s
return s[n-1][m-1]
if __name__ == '__main__':
s = Solution()
n = 3
m = 4
apples = [[0 for col in range(m)] for row in range(n)]
k = 1
for i in range(n):
for j in range(m):
apples[i][j] = k
k = k + 1
s.max_number_apples(apples,n,m)
one:initialization(初始化)
two:recurrence(递推)
多项式时间,需要额外的存储空间
四道简单DP的更多相关文章
- HDU 1087 简单dp,求递增子序列使和最大
Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 ...
- Codeforces Round #260 (Div. 1) A. Boredom (简单dp)
题目链接:http://codeforces.com/problemset/problem/455/A 给你n个数,要是其中取一个大小为x的数,那x+1和x-1都不能取了,问你最后取完最大的和是多少. ...
- codeforces Gym 100500H A. Potion of Immortality 简单DP
Problem H. ICPC QuestTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100500/a ...
- 简单dp --- HDU1248寒冰王座
题目链接 这道题也是简单dp里面的一种经典类型,递推式就是dp[i] = min(dp[i-150], dp[i-200], dp[i-350]) 代码如下: #include<iostream ...
- poj2385 简单DP
J - 简单dp Crawling in process... Crawling failed Time Limit:1000MS Memory Limit:65536KB 64bit ...
- hdu1087 简单DP
I - 简单dp 例题扩展 Crawling in process... Crawling failed Time Limit:1000MS Memory Limit:32768KB ...
- poj 1157 LITTLE SHOP_简单dp
题意:给你n种花,m个盆,花盆是有顺序的,每种花只能插一个花盘i,下一种花的只能插i<j的花盘,现在给出价值,求最大价值 简单dp #include <iostream> #incl ...
- hdu 2471 简单DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2571 简单dp, dp[n][m] +=( dp[n-1][m],dp[n][m-1],d[i][k ...
- Codeforces 41D Pawn 简单dp
题目链接:点击打开链接 给定n*m 的矩阵 常数k 以下一个n*m的矩阵,每一个位置由 0-9的一个整数表示 问: 从最后一行開始向上走到第一行使得路径上的和 % (k+1) == 0 每一个格子仅仅 ...
随机推荐
- CentOS 7 环境配置
1. 代理设置 http://blog.csdn.net/fwj380891124/article/details/42168683 2. xfce 桌面安装 http://blog.csdn.net ...
- BZOJ3522——[Poi2014]Hotel
1.题意:http://www.lydsy.com/JudgeOnline/problem.php?id=3522 2.分析:这道题有两种情况,第一个是三个点在同一个链上,这显然不可能了,因为树上的路 ...
- javascript学习笔记(2)————this
//简单的学习JavaScript中this关键词 //this在于我简单的理解就是谁调用了当前方法(函数),this就指向谁 var a = 20; function fn1(){ this.a = ...
- Jni 调试 : eclipse + Vs 联合调试
摘要: 本文原创,转载请注明地址 http://www.cnblogs.com/baokang/p/4982640.html 1.在Eclipse 中,Java 类中链接库引用到vs的debug目录下 ...
- BZOJ 1095: [ZJOI2007]Hide 捉迷藏
Description 一棵树,支持两个操作,修改一个点的颜色,问树上最远的两个白点距离. Sol 动态点分治. 动态点分治就是将每个重心连接起来,形成一个跟线段树类似的结构,当然它不是二叉的... ...
- java的各种使用小知识点总结。
9,重写Arrays.sort public int getHeight(int[][] actors, int n) { // write code here if (null == actors ...
- Struts开发包结构
- Feature Access
在ArcGIS Server中发布支持Feature Access地图服务,你需要知道的几点: 所绘制的mxd地图文件中包含的数据,必须来自企业级数据库链接: mxd中包含的所有图层的数据,必须来自同 ...
- GLUT的简洁OO封装
毕业设计用到了OpenGL,由于不会用MFC和Win32API做窗口程序:自然选用了GLUT.GLUT很好用,就是每次写一堆Init,注册callback,觉得有点恶心,于是对他做了简单的OO封装.记 ...
- 448. Find All Numbers Disappeared in an Array
https://leetcode.com/problems/find-all-numbers-disappeared-in-an-array/ 给出一列数,1 ≤ a[i] ≤ n,n是数组大小,有些 ...