[国家集训队] calc(动规+拉格朗日插值法)
题目
P4463 [国家集训队] calc
集训队的题目真是做不动呀\(\%>\_<\%\)
朴素方程
设\(f_{i,j}\)为前\(i\)个数值域\([1,j]\),且序列递增的总贡献,则有:
\]
由于递增序列可以全排列的:\(ans=f_{n,A}×n!\)
时间复杂度\(O(nA)\)
证明一
设\(f_{i,j}\)为关于\(j\)的\(2i\)次多项式,则\(f_{i-1,j-1}*j\)为关于\(j\)的2i-1次多项式,\(f_{i,j-1}\)为关于\(j\)的\(2i\)次多项式
通过归纳法证明出\(f_{i,j}\)为关于\(j\)的\(2i\)次多项式
证明二
设\(f_{i,j}\)为关于\(j\)的\(g(i)\)次多项式,变式:
\]
则有\(g(i)-1=g(i-1)+1\longrightarrow g(i)=g(i-1)+2\),故\(f_{i,j}\)为关于\(j\)的\(2i\)次多项式
具体做法
综上我们已经证明出了\(f_{i,j}\)为关于\(j\)的\(2i\)次多项式,所以仅需\(2i\)项,通过拉格朗日插值法就能得出这个多项式的系数表示法,从而代入\(j=A\)求解即可
而\((i,f_{n,i})\),就相当于多项式在坐标系上的一点,我们需要求出\(2n+1\)个点去确定多项式\(k_0~k_{2n}\)这些系数
Code
#include<bits/stdc++.h>
typedef int LL;
const LL maxn=2e3;
LL A,n,mod,N;
LL y[maxn],f[maxn][maxn];
inline LL Pow(LL base,LL b){
LL ret(1);
while(b){
if(b&1) ret=1ll*ret*base%mod; base=1ll*base*base%mod; b>>=1;
}return ret;
}
inline LL Calc(LL x){
LL ret(0);
for(LL i=1;i<=N;++i){
LL p(y[i]),q(1);
for(LL j=1;j<=N;++j){
if(j!=i){
p=1ll*p*(x-j+mod)%mod;
q=1ll*q*(i-j+mod)%mod;
}
}
ret=(ret+1ll*p*Pow(q,mod-2)%mod)%mod;
}
return ret;
}
int main(){
scanf("%d%d%d",&A,&n,&mod);
N=(n<<1)+1;
for(LL i=0;i<=N;++i) f[0][i]=1;
for(LL i=1;i<=n;++i)
for(LL j=1;j<=N;++j)
f[i][j]=(1ll*f[i-1][j-1]*j%mod+f[i][j-1])%mod;
LL C(1);
for(LL i=2;i<=n;++i) C=1ll*C*i%mod;
for(LL i=1;i<=N;++i) y[i]=f[n][i];
if(A<=N)
printf("%d",1ll*f[n][A]*C%mod);
else
printf("%d",1ll*Calc(A)*C%mod);
return 0;
}
[国家集训队] calc(动规+拉格朗日插值法)的更多相关文章
- P4463 [国家集训队] calc(拉格朗日插值)
传送门 设\(dp[i][j]\)为考虑\(i\)个数,其中最大值不超过\(j\)的答案,那么转移为\[dp[i][j]=dp[i-1][j-1]\times i\times j+dp[i][j-1] ...
- [国家集训队] calc
嘟嘟嘟 这道题dp虽然不难,但是我还是没推出来,感觉最近脑子不太好用啊. 于是就跑去问神仙gjx(全国前三!)了.(外出集训真是好) 神仙不愧是神仙,一会儿就想出来了,而且方法还比网上的题解好懂. d ...
- BZOJ2655 calc(动态规划+拉格朗日插值法)
考虑暴力dp:f[i][j]表示i个数值域1~j时的答案.考虑使其值域++,则有f[i][j]=f[i][j-1]+f[i-1][j-1]*i*j,边界f[i][i]=i!*i!. 注意到值域很大,考 ...
- Luogu P4463 [国家集训队] calc
WJMZBMR的题果然放在几年后看来仍然挺神,提出了一种独特的优化DP的方式 首先我们想一个暴力DP,先定下所有数的顺序(比如强制它递增),然后最后乘上\(n!\)种排列方式就是答案了 那么我们容易想 ...
- p4463 [国家集训队] calc
分析 代码 #include<bits/stdc++.h> using namespace std; ][],Ans; inline int pw(int x,int p){ ; whil ...
- [BZOJ2655]calc(拉格朗日插值法+DP)
2655: calc Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 428 Solved: 246[Submit][Status][Discuss] ...
- BZOJ2655 Calc - dp 拉格朗日插值法
BZOJ2655 Calc 参考 题意: 给定n,m,mod,问在对mod取模的背景下,从[1,m]中选出n个数相乘可以得到的总和为多少. 思路: 首先可以发现dp方程 ,假定dp[m][n]表示从[ ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose)
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 7676 Solved: 3509[Subm ...
- bzoj2152 / P2634 [国家集训队]聪聪可可(点分治)
P2634 [国家集训队]聪聪可可 淀粉质点分治板子 边权直接 mod 3 直接点分治统计出所有的符合条件的点对再和总方案数约分 至于约分.....gcd搞搞就好辣 #include<iostr ...
随机推荐
- c#——表达式树在LINQ动态查询
一般如果逻辑比较简单,只是存在有的情况多一个查询条件,有的情况不需要添加该查询条件 简单方式这样操作就可以了 public IQueryable<FileImport> DynamicCh ...
- jvm相关參数,调优
常见的jvm參数例如以下 -Xmx1024m:设置JVM最大可用内存为1024M. -Xms1024m:设置JVM初始内存为1024m. 此值能够设置与-Xmx同样,以避免每次垃圾回收完毕后JVM又一 ...
- 数据库读写分离(aop方式完整实现)
http://blog.csdn.net/machunlin2010/article/details/46471983
- 8.javascript获取表单中两个数字,并判断大小
获取表单数据的方式: 1.表单注意些id 2.使用document.getElementById("num").value 获取值 3.一定要注意现在得到是string类型,可以用 ...
- Virtual Private Cloud 专有网络 软件定义网络的方式 私有网络 大流量视频、直播类业务
私有网络 VPC_云上网络空间_自定义网络 - 腾讯云 https://cloud.tencent.com/product/vpc 私有网络 VPC 简介 私有网络(Virtual Private C ...
- The Log: What every software engineer should know about real-time data's unifying abstraction
http://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-abo ...
- Java程序员面试题集(1-50
下面的内容是对网上原有的Java面试题集及答案进行了全面修订之后给出的负责任的题目和答案,原来的题目中有很多重复题目和无价值的题目,还有不少的参考答案也是错误的,修改后的Java面试题集参照了JDK最 ...
- 转!!配置Tomcat时server.xml和content.xml自动还原问题
原博文地址:http://www.cnblogs.com/zuosl/p/4342190.html 当我们在处理中文乱码或是配置数据源时,我们要修改Tomcat下的server.xml和content ...
- 流畅的python 符合python风格的对象
对象表示形式 每门面向对象的语言至少都有一种获取对象的字符串表示形式的标准方式.Python 提供了两种方式. repr() 以便于开发者理解的方式返回对象的字符串表示形式.str() 以便于用户理解 ...
- tensorflow 中 softmax_cross_entropy_with_logits 与 sparse_softmax_cross_entropy_with_logits 的区别
http://stackoverflow.com/questions/37312421/tensorflow-whats-the-difference-between-sparse-softmax-c ...