Problem Description

Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numbers ( 1 <= i <= m, 1 <= j <= n ). Now he selects some sub-matrices, hoping to find the maximum number. Then he finds that there may be more than one maximum number, he also wants to know the number of them. But soon he find that it is too complex, so he changes his mind, he just want to know whether there is a maximum at the four corners of the sub-matrix, he calls this “Check corners”. It’s a boring job when selecting too many sub-matrices, so he asks you for help. (For the “Check corners” part: If the sub-matrix has only one row or column just check the two endpoints. If the sub-matrix has only one entry just output “yes”.)

Input

There are multiple test cases.

For each test case, the first line contains two integers m, n (1 <= m, n <= 300), which is the size of the row and column of the matrix, respectively. The next m lines with n integers each gives the elements of the matrix which fit in non-negative 32-bit integer.

The next line contains a single integer Q (1 <= Q <= 1,000,000), the number of queries. The next Q lines give one query on each line, with four integers r1, c1, r2, c2 (1 <= r1 <= r2 <= m, 1 <= c1 <= c2 <= n), which are the indices of the upper-left corner and lower-right corner of the sub-matrix in question.

Output

For each test case, print Q lines with two numbers on each line, the required maximum integer and the result of the “Check corners” using “yes” or “no”. Separate the two parts with a single space.

Sample Input

4 4
4 4 10 7
2 13 9 11
5 7 8 20
13 20 8 2
4
1 1 4 4
1 1 3 3
1 3 3 4
1 1 1 1

Sample Output

20 no
13 no
20 yes
4 yes

题意:

给定一个n*m (1<=m,n<=300)的矩阵,每次询问左上角(r1,c1)到右下角(r2,c2)的子矩形中的最大值并输出。如果每次所询问的四个角有最大值,输出yes,否则输出no。

题解:

裸二维RMQ就直接上板子吧!

#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cmath>
#include<map>
using namespace std;
typedef long long ll;
const int MAX=;
int val[MAX][MAX];
int dp[MAX][MAX][][];//最大值
int mm[MAX];
void initRMQ(int n,int m)//m*n的矩阵
{
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
dp[i][j][][]=val[i][j];
for(int ii=;ii<=mm[n];ii++)
for(int jj=;jj<=mm[m];jj++)
if(ii+jj)
for(int i=;i+(<<ii)-<=n;i++)
for(int j=;j+(<<jj)-<=m;j++)
if(ii)dp[i][j][ii][jj]=max(dp[i][j][ii-][jj],dp[i+(<<(ii-))][j][ii-][jj]);
else dp[i][j][ii][jj]=max(dp[i][j][ii][jj-],dp[i][j+(<<(jj-))][ii][jj-]);
}
int rmq(int x1,int y1,int x2,int y2)//所查询矩形区间内的最大值 左上角(x1,y1) -> 右下角(x2,y2)
{
int k1=mm[x2-x1+];
int k2=mm[y2-y1+];
x2=x2-(<<k1)+;
y2=y2-(<<k2)+;
return max(max(dp[x1][y1][k1][k2],dp[x1][y2][k1][k2]),max(dp[x2][y1][k1][k2],dp[x2][y2][k1][k2]));
}
int main()
{
mm[]=-;
for(int i=;i<=MAX;i++)
mm[i]=((i&(i-))==)?mm[i-]+:mm[i-];
int n,m,Q;
int r1,c1,r2,c2;
while(scanf("%d%d",&n,&m)==)
{
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%d",&val[i][j]);
initRMQ(n,m);
scanf("%d",&Q);
while(Q--)
{
scanf("%d%d%d%d",&r1,&c1,&r2,&c2);//左上角(r1,c1) -> 右下角(r2,c2)
if(r1>r2)swap(r1,r2);
if(c1>c2)swap(c1,c2);
int tmp=rmq(r1,c1,r2,c2);
printf("%d ",tmp);
if(tmp==val[r1][c1]||tmp==val[r1][c2]||tmp==val[r2][c1]||tmp==val[r2][c2])
printf("yes\n");
else printf("no\n");
}
}
return ;
}

【HDOJ 2888】Check Corners(裸二维RMQ)的更多相关文章

  1. HDU 2888:Check Corners(二维RMQ)

    http://acm.hdu.edu.cn/showproblem.php?pid=2888 题意:给出一个n*m的矩阵,还有q个询问,对于每个询问有一对(x1,y1)和(x2,y2),求这个子矩阵中 ...

  2. HDU2888 Check Corners(二维RMQ)

    有一个矩阵,每次查询一个子矩阵,判断这个子矩阵的最大值是不是在这个子矩阵的四个角上 裸的二维RMQ #pragma comment(linker, "/STACK:1677721600&qu ...

  3. Hdu 2888 Check Corners (二维RMQ (ST))

    题目链接: Hdu 2888 Check Corners 题目描述: 给出一个n*m的矩阵,问以(r1,c1)为左上角,(r2,c2)为右下角的子矩阵中最大的元素值是否为子矩阵的顶点? 解题思路: 二 ...

  4. HDU 2888 Check Corners (模板题)【二维RMQ】

    <题目链接> <转载于 >>> > 题目大意: 给出一个N*M的矩阵,并且给出该矩阵上每个点对应的值,再进行Q次询问,每次询问给出代询问子矩阵的左上顶点和右下 ...

  5. hdu 2888 二维RMQ模板题

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  6. hdu 2888 二维RMQ

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  7. hduacm 2888 ----二维rmq

    http://acm.hdu.edu.cn/showproblem.php?pid=2888 模板题  直接用二维rmq 读入数据时比较坑爹  cin 会超时 #include <cstdio& ...

  8. 【HDOJ】2888 Check Corners

    二维RMQ. /* 2888 */ #include <iostream> #include <algorithm> #include <cstdio> #incl ...

  9. poj2019 二维RMQ裸题

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions:8623   Accepted: 4100 Descrip ...

随机推荐

  1. 动态赋值poster,无法显示

    vue操作video的poster属性时,动态给poster赋值,在chrome下是无法显示的 解决办法 在赋值后,找到video元素.load()下就会看到封面图了

  2. 解决Non-resolvable parent POM: Could not find artifact 出现的问题

    在编译spring boot 多模块项目的时候,往往出现 Non-resolvable parent POM: Could not find artifact 后面跟一串其它信息,网上大部分解决方案是 ...

  3. Thrift-RPC client in Flume

    Get RpcClient from RpcClientFactory with Reflection programming Message or Event definition in Flum ...

  4. tensorflow: a Implementation of rotation ops (旋转的函数实现方法)

    tensorflow 旋转矩阵的函数实现方法 关键字: rot90, tensorflow 1. 背景 在做数据增强的操作过程中, 很多情况需要对图像旋转和平移等操作, 针对一些特殊的卷积(garbo ...

  5. MySQL数据操作(借鉴)

    /* 启动MySQL */net start mysql /* 连接与断开服务器 */mysql -h 地址 -P 端口 -u 用户名 -p 密码 /* 跳过权限验证登录MySQL */mysqld ...

  6. 「资料/转载」HTML标签英文单词对照表

    <!--> / 注释 <!DOCTYPE> document type 文档类型 <a> anchor 超链接 <abbr> abbreviation ...

  7. C#中的多线程 - 基础知识 z

    原文:http://www.albahari.com/threading/ 专题:C#中的多线程 1简介及概念Permalink C# 支持通过多线程并行执行代码,线程有其独立的执行路径,能够与其它线 ...

  8. python csv写入数据,消除空行

    import csv rowlist=[{'first_name': 'mark', 'last_name': 'zhao','age':21}, {'first_name': 'tony', 'la ...

  9. February 17 2017 Week 7 Friday

    The very essence of romance is uncertainty. 浪漫的精髓就在于它充满种种可能. If you want a happy life with enduring ...

  10. 单片机课程设计>八音盒

    2017—2018学年度第一学期 <单片机原理及应用>作品考试 八音盒 2017-2018-1<单片机原理及应用>作品设计提交文档 一.作品设计目的 1.利用51单片机的各个部 ...