题目大意:给你两个多项式$A,B$,求多项式$C$使得:

$$
C_n=\sum\limits_{x\oplus y=n}A_xB_y
$$
题解:$FWT$

卡点:

C++ Code:

#include <cstdio>
#include <cctype>
namespace __IO {
int ch;
inline int read() {
while (isspace(ch = getchar())) ;
return ch & 15;
}
}
using __IO::read; #define maxn 2097152 int lim;
inline void init(const int n) {
lim = 1; while (lim < n) lim <<= 1;
}
inline void FWT(long long *A, const int op = 1) {
for (register int mid = 1; mid < lim; mid <<= 1)
for (register int i = 0; i < lim; i += mid << 1)
for (register int j = 0; j < mid; ++j) {
const long long X = A[i + j], Y = A[i + j + mid];
A[i + j] = X + Y, A[i + j + mid] = X - Y;
}
if (!op) for (long long *i = A; i != A + lim; ++i) *i /= lim;
} int n;
long long A[maxn], B[maxn];
int main() {
scanf("%d", &n);
for (int i = 0; i < n; ++i) A[i] = read();
for (int i = 0; i < n; ++i) B[i] = read();
init(n + n);
FWT(A), FWT(B);
for (int i = 0; i < lim; ++i) A[i] = A[i] * B[i];
FWT(A, 0);
for (int i = 0; i < n; ++i) printf("%lld ", A[i]); puts("");
return 0;
}

[SOJ #48]集合对称差卷积的更多相关文章

  1. [SOJ #47]集合并卷积

    题目大意:给你两个多项式$A,B$,求多项式$C$使得:$$C_n=\sum\limits_{x|y=n}A_xB_y$$题解:$FWT$,他可以解决形如$C_n=\sum\limits_{x\opl ...

  2. 集合并卷积的三种求法(分治乘法,快速莫比乌斯变换(FMT),快速沃尔什变换(FWT))

    也许更好的阅读体验 本文主要内容是对武汉市第二中学吕凯风同学的论文<集合幂级数的性质与应用及其快速算法>的理解 定义 集合幂级数 为了更方便的研究集合的卷积,引入集合幂级数的概念 集合幂级 ...

  3. BZOJ 4036: [HAOI2015]按位或 集合幂函数 莫比乌斯变换 莫比乌斯反演

    http://www.lydsy.com/JudgeOnline/problem.php?id=4036 http://blog.csdn.net/lych_cys/article/details/5 ...

  4. UOJ#310.【UNR #2】黎明前的巧克力(FWT)

    题意 给出 \(n\) 个数 \(\{a_1, \cdots, a_n\}\),从中选出两个互不相交的集合(不能都为空),使得第一个集合与第二个集合内的数的异或和相等,求总方案数 \(\bmod 99 ...

  5. FWT 学习总结

    我理解的FWT是在二元运算意义下的卷积 目前比较熟练掌握的集合对称差卷积 对于子集卷积和集合并卷积掌握不是很熟练(挖坑ing) 那么就先来谈一谈集合对称差卷积吧 所谓集合对称差卷积 就是h(i)=si ...

  6. 一个有关FWT&FMT的东西

    这篇文章在讲什么 相信大家都会FWT和FMT. 如果你不会,推荐你去看一下VFK的2015国家集训队论文. 设全集为\(U=\{1,2,\ldots,n\}\),假设我们关心的\(f_S\)中的集合\ ...

  7. pthon/零起点(一、集合)

    pthon/零起点(一.集合) set( )集合,集合是无序的,集合是可变的,集合是可迭代的 set()强型转成集合数据类型 set()集合本身就是去掉重复的元素 集合更新操作案列: j={1,2,3 ...

  8. FMT 与 子集(逆)卷积

    本文参考了 Dance of Faith 大佬的博客 我们定义集合并卷积 \[ h_{S} = \sum_{L \subseteq S}^{} \sum_{R \subseteq S}^{} [L \ ...

  9. loj #161 子集卷积

    求不相交集合并卷积 sol: 集合并卷积?看我 FWT! 交一发,10 以上的全 T 了 然后经过参考别人代码认真比对后发现我代码里有这么一句话: rep(s, , MAXSTATE) rep(i, ...

随机推荐

  1. Linux命令应用大词典-第19章 文件系统管理

    19.1 mkfs:创建Linux文件系统 19.2 mke2fs:创建ext2.3.4文件系统 19.3 mkfs.ext4:创建ext4文件系统 19.4 mkfs.ext3:创建ext3文件系统 ...

  2. Linux命令应用大词典-第6章 文件处理

    6.1 sort:对文件中的数据进行排序 6.2 uniq:将重复行从输出文件中删除 6.3 cut:从文件每行中输出选定的字节.字符或字段 6.4 comm:逐行比较两个已经排序的文件 6.5 di ...

  3. 什么是Spark

    什么是Spark Apache Spark是一个开源集群运算框架, 相对于Hadoop的MapReduce会在运行完工作后将中介数据存放到磁盘中,Spark使用了存储器内运算技术,能在数据尚未写入硬盘 ...

  4. 【Linux 运维】linux系统查看版本信息

    查看linux系统版本信息: [root@kvm-host~]# cat /proc/version       (Linux查看当前操作系统版本信息)Linux version 3.10.0-514 ...

  5. 洛谷P1068 分数线划定:sort结构体排序+贪心

    题目描述 世博会志愿者的选拔工作正在 A 市如火如荼的进行.为了选拔最合适的人才,A市对所有报名的选手进行了笔试,笔试分数达到面试分数线的选手方可进入面试. 面试分数线根据计划录取人数的150%划定, ...

  6. POJ 2187 Beauty Contest(凸包+旋转卡壳)

    Description Bessie, Farmer John's prize cow, has just won first place in a bovine beauty contest, ea ...

  7. POJ 3487 The Stable Marriage Problem(稳定婚姻问题 模版题)

    Description The stable marriage problem consists of matching members of two different sets according ...

  8. 适合初学者的嵌入式Linux计划

    俗话说万事开头难,刚开始的时候,你是否根本就不知如何开始,上网查资料被一堆堆新名词搞的找不到北,去图书馆看书也是找不到方向?又是arm,又是linux,又是uboot头都大了,不知道自己究竟从哪里开始 ...

  9. VUE中组件的使用

    关于vue组件引用 使用Nodejs的方法 被引用的组件要暴露 module.exports={}; 引用时 用 var abc= require("组件的路径") 然后 就可以用 ...

  10. SFTP服务器之创建普通用户

    这篇博客主要写以下几点: 1.介绍SFTP服务器 2.用SFTP服务器的root用户a创建普通用户 3.修改普通用户名称以及默认登入时的目录名称 4.创建普通用户踩过的坑以及收获 一.介绍SFTP服务 ...