http://www.lydsy.com/JudgeOnline/problem.php?id=1257

Description

给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7

Input

输入仅一行,包含两个整数n, k。

Output

输出仅一行,即j(n, k)。

Sample Input

5 3

Sample Output

7

————————————————————————————————————————————

参考了http://blog.csdn.net/u013598409/article/details/47037031

预备知识:

1.等差数列求和。

2.k%i=k-k/i*i(除号均为整除,下同)

由知识2可得我们所求的答案为n*k-∑(k/i*i)

我们也可知道,i在一定的范围内时,k/i的值将唯一。

所以这给我们一个想法,即固定w=k/i,将答案变为n*k-∑(w*∑i)

那么求∑i就需要知道这个区间的左右端点,左端点即是i,而右端点r=k/w。

证明:显然i*w<=k,那么i<=k/w,取等时为边界。

然后利用等比数列求和的想法即可求得答案。

接下来设s=根号n(向下取整),简单证明算法复杂度为O(s):

显然(但我不会证明)s+m>s>n/(s+m),也就是说s处于一个对称轴的位置,他之后的数(即[s+1,n])被n除后一定可以映射到[1,s]之中,即最大数量为s个。

那么反着推[1,s]被n除后映射的最大数量也应该是s个

所以我们能够发现w的取值个数最大有2*s个。

即算法复杂度为O(2*s)

#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
int main(){
ll n,k;
scanf("%lld%lld",&n,&k);
ll ans=n*k;
if(n>k)n=k;
int l,r,j;
for(int i=;i<=n;i=r+){
j=k/i,l=i,r=k/j;
if(r>=n)r=n;
ans-=(ll)(l+r)*(r-l+)*j/;
}
printf("%lld\n",ans);
return ;
}

BZOJ1257:[CQOI2007]余数之和——题解+证明的更多相关文章

  1. BZOJ1257 CQOI2007 余数之和 【数分块】

    BZOJ1257 CQOI2007 余数之和 Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值 其中 ...

  2. bzoj千题计划173:bzoj1257: [CQOI2007]余数之和sum

    http://www.lydsy.com/JudgeOnline/problem.php?id=1257 k%i=k-int(k/i)*i 除法分块,对于相同的k/i用等差序列求和来做 #includ ...

  3. bzoj1257[CQOI2007]余数之和(除法分块)

    1257: [CQOI2007]余数之和 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 6117  Solved: 2949[Submit][Statu ...

  4. bzoj1257: [CQOI2007]余数之和 整除分块

    题意:给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值其中k mod i表示k除以i的余数.例如j(5, 3)=3 mod ...

  5. BZOJ1257 [CQOI2007]余数之和sum

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  6. bzoj1257: [CQOI2007]余数之和sum(数论)

    非常经典的题目... 要求 则有 实际上 最多只有2*sqrt(k)种取值,非常好证明 因为>=sqrt(k)的数除k下取整得到的数一定<=sqrt(k),而k除以<=sqrt(k) ...

  7. [BZOJ1257][CQOI2007]余数之和

    题目大意 给你 \(n, k\),计算 $ \sum_{i=1}^n k \bmod i$ 解析 注意到 $ k\bmod i=k-[k/i] \times i$ 则上式等于 $ n \times k ...

  8. [BZOJ1257][CQOI2007]余数之和sum 数学+分块

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1257 题目所求为$$Ans=\sum_{i=1}^nk%i$$ 将其简单变形一下$$Ans ...

  9. BZOJ1257: [CQOI2007]余数之和——整除分块

    题意 求 $\sum _{i=1}^n k \ mod \ i$($1\leq n,k\leq 10^9$). 分析 数据范围这么大 $O(n)$ 的复杂度也挺不住啊 根据取模的意义,$k \ mod ...

随机推荐

  1. hdu1421搬寝室(动态规划)

    搬寝室 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  2. 【selenium】selenium全分享

    第一节:selenium基础 [http://note.youdao.com/noteshare?id=43603fb53593bfc15c28bc358a3fa6ec] 目录: selenium简介 ...

  3. CSP201612-1:中间数

    引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...

  4. mysql中的select语句where条件group by ,having , order by,limit的顺序及用法

    -- 语法: SELECT select_list FROM table_name [ WHERE search_condition ] [ GROUP BY group_by_expression ...

  5. Paper Reading - Convolutional Image Captioning ( CVPR 2018 )

    Link of the Paper: https://arxiv.org/abs/1711.09151 Motivation: LSTM units are complex and inherentl ...

  6. halcon基础应用和方法经验分享

    halcon基础应用和方法经验分享 一.Halcon软件 的安装 安装一直点下一步就好了,这个过程很简单,就不讲了 二.Halcon软件license安装 Halcon是商业视觉软件,是需要收费的,但 ...

  7. [git] Git in Practice

    Work flow with git and github Work with Remotes Check the current status git status Check the latest ...

  8. POJ 3487 The Stable Marriage Problem(稳定婚姻问题 模版题)

    Description The stable marriage problem consists of matching members of two different sets according ...

  9. “Hello world!”团队—文案+美工

    ★★★本次采访我们随机选取5位不同的潜在用户,随机选取地点进行了本次采访. (一)项目有关内容: 大家好,我们是Hello World团队.我们组目前正在开发一个飞机大战的小游戏大家应该在小时候都玩过 ...

  10. 在cmd里面使用mysql命令

    1.先找出mysqld文件所在的位置,我的是在C:\Program Files\MySQL\MySQL Server 5.1\bin. 2.cd C:\Program Files\MySQL\MySQ ...