BZOJ1257:[CQOI2007]余数之和——题解+证明
http://www.lydsy.com/JudgeOnline/problem.php?id=1257
Description
给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7
Input
输入仅一行,包含两个整数n, k。
Output
输出仅一行,即j(n, k)。
Sample Input
Sample Output
7
————————————————————————————————————————————
参考了http://blog.csdn.net/u013598409/article/details/47037031
预备知识:
1.等差数列求和。
2.k%i=k-k/i*i(除号均为整除,下同)
由知识2可得我们所求的答案为n*k-∑(k/i*i)
我们也可知道,i在一定的范围内时,k/i的值将唯一。
所以这给我们一个想法,即固定w=k/i,将答案变为n*k-∑(w*∑i)
那么求∑i就需要知道这个区间的左右端点,左端点即是i,而右端点r=k/w。
证明:显然i*w<=k,那么i<=k/w,取等时为边界。
然后利用等比数列求和的想法即可求得答案。
接下来设s=根号n(向下取整),简单证明算法复杂度为O(s):
显然(但我不会证明)s+m>s>n/(s+m),也就是说s处于一个对称轴的位置,他之后的数(即[s+1,n])被n除后一定可以映射到[1,s]之中,即最大数量为s个。
那么反着推[1,s]被n除后映射的最大数量也应该是s个
所以我们能够发现w的取值个数最大有2*s个。
即算法复杂度为O(2*s)
#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
int main(){
ll n,k;
scanf("%lld%lld",&n,&k);
ll ans=n*k;
if(n>k)n=k;
int l,r,j;
for(int i=;i<=n;i=r+){
j=k/i,l=i,r=k/j;
if(r>=n)r=n;
ans-=(ll)(l+r)*(r-l+)*j/;
}
printf("%lld\n",ans);
return ;
}
BZOJ1257:[CQOI2007]余数之和——题解+证明的更多相关文章
- BZOJ1257 CQOI2007 余数之和 【数分块】
BZOJ1257 CQOI2007 余数之和 Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值 其中 ...
- bzoj千题计划173:bzoj1257: [CQOI2007]余数之和sum
http://www.lydsy.com/JudgeOnline/problem.php?id=1257 k%i=k-int(k/i)*i 除法分块,对于相同的k/i用等差序列求和来做 #includ ...
- bzoj1257[CQOI2007]余数之和(除法分块)
1257: [CQOI2007]余数之和 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 6117 Solved: 2949[Submit][Statu ...
- bzoj1257: [CQOI2007]余数之和 整除分块
题意:给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值其中k mod i表示k除以i的余数.例如j(5, 3)=3 mod ...
- BZOJ1257 [CQOI2007]余数之和sum
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- bzoj1257: [CQOI2007]余数之和sum(数论)
非常经典的题目... 要求 则有 实际上 最多只有2*sqrt(k)种取值,非常好证明 因为>=sqrt(k)的数除k下取整得到的数一定<=sqrt(k),而k除以<=sqrt(k) ...
- [BZOJ1257][CQOI2007]余数之和
题目大意 给你 \(n, k\),计算 $ \sum_{i=1}^n k \bmod i$ 解析 注意到 $ k\bmod i=k-[k/i] \times i$ 则上式等于 $ n \times k ...
- [BZOJ1257][CQOI2007]余数之和sum 数学+分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1257 题目所求为$$Ans=\sum_{i=1}^nk%i$$ 将其简单变形一下$$Ans ...
- BZOJ1257: [CQOI2007]余数之和——整除分块
题意 求 $\sum _{i=1}^n k \ mod \ i$($1\leq n,k\leq 10^9$). 分析 数据范围这么大 $O(n)$ 的复杂度也挺不住啊 根据取模的意义,$k \ mod ...
随机推荐
- MySQL - 问题集 - Access denied; you need the SUPER privilege for
当执行存储过程相关操作时,如果出现该错误,则往下看. 打开存储过程,会发现“CREATE ALGORITHM=UNDEFINED DEFINER=`root`@`localhost`”. 由于DEFI ...
- 一种新的自动化 UI 测试解决方案 Airtest Project
今天分享一个自动化UI测试工具airtest——一款网易出品的基于图像识别面向游UI测试的工具,也支持原生Android App基于元素识别的UI自动化测试.主要包含了三部分:Airtest IDE. ...
- Linux命令应用大词典-第19章 文件系统管理
19.1 mkfs:创建Linux文件系统 19.2 mke2fs:创建ext2.3.4文件系统 19.3 mkfs.ext4:创建ext4文件系统 19.4 mkfs.ext3:创建ext3文件系统 ...
- 第五模块:WEB开发基础 第2章·JavaScript基础
01-JavaScript的历史发展过程 02-js的引入方式和输出 03-命名规范和变量的声明定义 04-五种基本数据类型 05-运算符 06-字符串处理 07-数据类型转换 08-流程控制语句if ...
- leetcode-生成括号(回溯算法)
转载出处:https://blog.csdn.net/yanerhao/article/details/68561290 生成括号 给出 n 代表生成括号的对数,请你写出一个函数,使其能够生 ...
- css多行文本溢出显示省略号(…)
text-overflow:ellipsis属性可以实现单行文本的溢出显示省略号(…).但部分浏览器还需要加宽度width属性. css代码: overflow: hidden; text-overf ...
- bug 调试
系统性能分析中,CPU.内存和 IO 是主要关注项.----系统层面 1. 对于 CPU,如果是常见的 Linux,可以先用 top 命令查看负载状况. top -H -p [pid] pstree ...
- Hadoop源码解析 1 --- Hadoop工程包架构解析
1 Hadoop中各工程包依赖简述 Google的核心竞争技术是它的计算平台.Google的大牛们用了下面5篇文章,介绍了它们的计算设施. GoogleCluster: http:// ...
- UVA 11922 Permutation Transformer(平衡二叉树)
Description Write a program to transform the permutation 1, 2, 3,..., n according to m instructions. ...
- CodeForces - 792C Divide by Three (DP做法)
C. Divide by Three time limit per test: 1 second memory limit per test: 256 megabytes input: standar ...