【模板】SPOJ FACT0 大数分解 miller-rabin & pollard-rho
http://www.spoj.com/problems/FACT0/en/
给一个小于1e15的数,将他分解。
miller-rabin & pollard-rho模板
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int xjb=10;
ll mmul(ll a, ll b, ll m){
ll d=((long double)a/m*b+1e-8);
ll r=a*b-d*m;
return r<0?r+m:r;
}
ll mpow(ll a, ll b, ll m){ll r=1;for(;b;b>>=1,a=mmul(a,a,m))if(b&1)r=mmul(r,a,m);return r;}
ll gcd(ll a, ll b){return a?gcd(b%a,a):b;}
int prime(ll n){
if(n==1) return 0;
if(n==2||n==3||n==5) return 1;
if(!(n&1)||(n%3==0)||(n%5==0)) return 0;
ll m=n-1; int k=0;
while(!(m&1)) m>>=1, k++;
for(int tt=0; tt<xjb; ++tt){
ll x=mpow(rand()%(n-2)+2,m,n), y=x;
for(int i=0; i<k; ++i){
x=mmul(x,x,n);
if(x==1&&y!=1&&y!=n-1) return 0;
y=x;
}
if(x!=1) return 0;
}
return 1;
}
ll f[105]; int M;
ll rho(ll n, ll c){
ll x=rand()%n, y=x, t=1;
for(int i=1, k=2; t==1; ++i){
x=(mmul(x,x,n)+c)%n;
t=gcd(x>y?x-y:y-x, n);
if(i==k) y=x, k<<=1;
}
return t;
}
void work(ll n){
if(n==1) return;
if(prime(n)){f[M++]=n; return;}
ll t=n;
while(t==n) t=rho(n, rand()%5+1);
work(t); work(n/t);
}
int main(){
srand(19260817);
ll n;
while(scanf("%lld", &n), n){
if(n==1){puts(""); continue;}
M=0;
work(n);
sort(f, f+M);
for(int i=0, c=1; i<M; ++i){
if(f[i]!=f[i+1]) printf("%lld^%d ", f[i], c), c=1;
else c++;
}
puts("");
}
return 0;
}
【模板】SPOJ FACT0 大数分解 miller-rabin & pollard-rho的更多相关文章
- POJ2429 - GCD & LCM Inverse(Miller–Rabin+Pollard's rho)
题目大意 给定两个数a,b的GCD和LCM,要求你求出a+b最小的a,b 题解 GCD(a,b)=G GCD(a/G,b/G)=1 LCM(a/G,b/G)=a/G*b/G=a*b/G^2=L/G 这 ...
- POJ1811- Prime Test(Miller–Rabin+Pollard's rho)
题目大意 给你一个非常大的整数,判断它是不是素数,如果不是则输出它的最小的因子 题解 看了一整天<初等数论及其应用>相关部分,终于把Miller–Rabin和Pollard's rho这两 ...
- 数学基础IV 欧拉函数 Miller Rabin Pollard's rho 欧拉定理 行列式
找了一些曾经没提到的算法.这应该是数学基础系最后一篇. 曾经的文章: 数学基础I 莫比乌斯反演I 莫比乌斯反演II 数学基础II 生成函数 数学基础III 博弈论 容斥原理(hidden) 线性基(h ...
- 模板题Pollard_Rho大数分解 A - Prime Test POJ - 1811
题意:是素数就输出Prime,不是就输出最小因子. #include <cstdio> #include<time.h> #include <algorithm> ...
- 大整数分解质因数(Pollard rho算法)
#include <iostream> #include <cstring> #include <cstdlib> #include <stdio.h> ...
- poj 1811 Pallor Rho +Miller Rabin
/* 题目:给出一个数 如果是prime 输出prime 否则输出他的最小质因子 Miller Rabin +Poller Rho 大素数判定+大数找质因子 后面这个算法嘛 基于Birthday Pa ...
- HDU 3864 D_num Miller Rabin 质数推断+Pollard Rho大整数分解
链接:http://acm.hdu.edu.cn/showproblem.php? pid=3864 题意:给出一个数N(1<=N<10^18).假设N仅仅有四个约数.就输出除1外的三个约 ...
- poj 1811 随机素数和大数分解(模板)
Sample Input 2 5 10 Sample Output Prime 2 模板学习: 判断是否是素数,数据很大,所以用miller,不是的话再用pollard rho分解 miller : ...
- POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
随机推荐
- 【题解】Uoj79一般图最大匹配
带花树裸题,感觉带花树强强……不会的勿看此文,解释的可能不对,只是给自己看的!!!如题,带花树即为求一般图最大匹配算法(匈牙利与dinic为二分图最大匹配).推荐论文:2015年<浅谈图的匹配算 ...
- BZOJ1834:[ZJOI2010]网络扩容——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=1834 https://www.luogu.org/problemnew/show/P2604#sub ...
- vector去除重复的元素
vector<int> v; sort(v.begin(),v.end()); v.erase(unique(v.begin(), v.end()), v.end());
- Codeforces Round #329 (Div. 2)A 字符串处理
A. 2Char time limit per test 2 seconds memory limit per test 256 megabytes input standard input outp ...
- BST POJ - 2309 思维题
Consider an infinite full binary search tree (see the figure below), the numbers in the nodes are 1, ...
- TCP/UDP HTTP
TPC/IP协议是传输层协议,主要解决数据如何在网络中传输,而HTTP是应用层协议,主要解决如何包装数据.关于TCP/IP和HTTP协议的关系,网络有一段比较容易理解的介绍:“我们在传输数据时,可以只 ...
- [zabbix]zabbix2.0apt源安装
http://www.sysadminworld.com/2013/install-zabbix-2-on-ubuntu-12-04-precise/
- C#学习之泛型功能与限制
在泛型类的描述中还会有时需要很多限制,例如对待一个泛型类型,在类中定义一个变量需要初始化时,不能确定是用Null还是0. 因为不能够确定它是值类型还是引用类型,这时可以用到default语句(下面有介 ...
- 学习opencv-------函数使用一
#include"head.h" //cvResize() /*int main() { IplImage *img = cvLoadImage("e:/picture/ ...
- HDU1507二分图
Uncle Tom's Inherited Land* Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (J ...