NumPy - 线性代数

NumPy 包包含numpy.linalg模块,提供线性代数所需的所有功能。 此模块中的一些重要功能如下表所述。

序号 函数及描述
1. dot 两个数组的点积
2. vdot 两个向量的点积
3. inner 两个数组的内积
4. matmul 两个数组的矩阵积
5. determinant 数组的行列式
6. solve 求解线性矩阵方程
7. inv 寻找矩阵的乘法逆矩阵

numpy.dot()

此函数返回两个数组的点积。 对于二维向量,其等效于矩阵乘法。 对于一维数组,它是向量的内积。 对于 N 维数组,它是a的最后一个轴上的和与b的倒数第二个轴的乘积。

import numpy.matlib
import numpy as np a = np.array([[1,2],[3,4]])
b = np.array([[11,12],[13,14]])
np.dot(a,b)
Python

输出如下:

[[37  40]
[85 92]]
Python

要注意点积计算为:

[[1*11+2*13, 1*12+2*14],[3*11+4*13, 3*12+4*14]]

numpy.vdot()

此函数返回两个向量的点积。 如果第一个参数是复数,那么它的共轭复数会用于计算。 如果参数id是多维数组,它会被展开。

例子

import numpy as np
a = np.array([[1,2],[3,4]])
b = np.array([[11,12],[13,14]])
print np.vdot(a,b)
Python

输出如下:

130
Python

注意:1*11 + 2*12 + 3*13 + 4*14 = 130

numpy.inner()

此函数返回一维数组的向量内积。 对于更高的维度,它返回最后一个轴上的和的乘积。

例子

import numpy as np
print np.inner(np.array([1,2,3]),np.array([0,1,0]))
# 等价于 1*0+2*1+3*0
Python

输出如下:

2
Python

例子

# 多维数组示例
import numpy as np
a = np.array([[1,2], [3,4]]) print '数组 a:'
print a
b = np.array([[11, 12], [13, 14]]) print '数组 b:'
print b print '内积:'
print np.inner(a,b)
Python

输出如下:

数组 a:
[[1 2]
[3 4]] 数组 b:
[[11 12]
[13 14]] 内积:
[[35 41]
[81 95]]
Python

上面的例子中,内积计算如下:

1*11+2*12, 1*13+2*14
3*11+4*12, 3*13+4*14
Python

numpy.matmul

numpy.matmul()函数返回两个数组的矩阵乘积。 虽然它返回二维数组的正常乘积,但如果任一参数的维数大于2,则将其视为存在于最后两个索引的矩阵的栈,并进行相应广播。

另一方面,如果任一参数是一维数组,则通过在其维度上附加 1 来将其提升为矩阵,并在乘法之后被去除。

例子

# 对于二维数组,它就是矩阵乘法
import numpy.matlib
import numpy as np a = [[1,0],[0,1]]
b = [[4,1],[2,2]]
print np.matmul(a,b)
Python

输出如下:

[[4  1]
[2 2]]
Python

例子

# 二维和一维运算
import numpy.matlib
import numpy as np a = [[1,0],[0,1]]
b = [1,2]
print np.matmul(a,b)
print np.matmul(b,a)
Python

输出如下:

[1  2]
[1 2]
Python

例子

# 维度大于二的数组
import numpy.matlib
import numpy as np a = np.arange(8).reshape(2,2,2)
b = np.arange(4).reshape(2,2)
print np.matmul(a,b)
Python

输出如下:

[[[2   3]
[6 11]]
[[10 19]
[14 27]]]
Python

numpy.linalg.det()

行列式在线性代数中是非常有用的值。 它从方阵的对角元素计算。 对于 2×2 矩阵,它是左上和右下元素的乘积与其他两个的乘积的差。

换句话说,对于矩阵[[a,b],[c,d]],行列式计算为ad-bc。 较大的方阵被认为是 2×2 矩阵的组合。

numpy.linalg.det()函数计算输入矩阵的行列式。

例子

import numpy as np
a = np.array([[1,2], [3,4]])
print np.linalg.det(a)
Python

输出如下:

-2.0
Python

例子

b = np.array([[6,1,1], [4, -2, 5], [2,8,7]])
print b
print np.linalg.det(b)
print 6*(-2*7 - 5*8) - 1*(4*7 - 5*2) + 1*(4*8 - -2*2)
Python

输出如下:

[[ 6 1 1]
[ 4 -2 5]
[ 2 8 7]] -306.0 -306
Python

numpy.linalg.solve()

numpy.linalg.solve()函数给出了矩阵形式的线性方程的解。

考虑以下线性方程:

x + y + z = 6

2y + 5z = -4

2x + 5y - z = 27
Python

可以使用矩阵表示为:

如果矩阵成为AXB,方程变为:

AX = B
Python

X = A^(-1)B
Python

numpy.linalg.inv()

我们使用numpy.linalg.inv()函数来计算矩阵的逆。 矩阵的逆是这样的,如果它乘以原始矩阵,则得到单位矩阵。

例子

import numpy as np 

x = np.array([[1,2],[3,4]])
y = np.linalg.inv(x)
print x
print y
print np.dot(x,y)
Python

输出如下:

[[1 2]
[3 4]]
[[-2. 1. ]
[ 1.5 -0.5]]
[[ 1.00000000e+00 1.11022302e-16]
[ 0.00000000e+00 1.00000000e+00]]
Python

例子

现在让我们在示例中创建一个矩阵A的逆。

import numpy as np
a = np.array([[1,1,1],[0,2,5],[2,5,-1]]) print '数组 a:'
print a
ainv = np.linalg.inv(a) print 'a 的逆:'
print ainv print '矩阵 b:'
b = np.array([[6],[-4],[27]])
print b print '计算:A^(-1)B:'
x = np.linalg.solve(a,b)
print x
# 这就是线性方向 x = 5, y = 3, z = -2 的解
Python

输出如下:

数组 a:
[[ 1 1 1]
[ 0 2 5]
[ 2 5 -1]] a 的逆:
[[ 1.28571429 -0.28571429 -0.14285714]
[-0.47619048 0.14285714 0.23809524]
[ 0.19047619 0.14285714 -0.0952381 ]] 矩阵 b:
[[ 6]
[-4]
[27]] 计算:A^(-1)B:
[[ 5.]
[ 3.]
[-2.]]
Python

结果也可以使用下列函数获取

x = np.dot(ainv,b)

NumPy线性代数的更多相关文章

  1. 19、NumPy——线性代数

    NumPy 线性代数 NumPy 提供了线性代数函数库 linalg,该库包含了线性代数所需的所有功能,可以看看下面的说明: 函数 描述 dot 两个数组的点积,即元素对应相乘. vdot 两个向量的 ...

  2. Numpy 线性代数

    Numpy 提供了线性代数库 linalg , 该库包含了线性代数所需的所有功能,可以看卡下面的说明: 函数 描述 dot 两个数组的点积, 即元素对应相乘 vdot 两个向量的点积 inner 两个 ...

  3. 吴裕雄--天生自然Numpy库学习笔记:NumPy 线性代数

    import numpy.matlib import numpy as np a = np.array([[1,2],[3,4]]) b = np.array([[11,12],[13,14]]) p ...

  4. [转]numpy线性代数基础 - Python和MATLAB矩阵处理的不同

    转自:http://blog.csdn.net/pipisorry/article/details/45563695 http://blog.csdn.net/pipisorry/article/de ...

  5. Python Numpy线性代数操作

    Python Numpy线性代数函数操作 1.使用dot计算矩阵乘法 import numpy as np from numpy import ones from __builtin__ import ...

  6. Numpy Study 1

    Numpy 使用1 1.Numpy创建数组 import numpy as np 创建数组有以下方式: (1).arange numpy.arange([start, ]stop, [step, ]d ...

  7. 数据分析 大数据之路 四 numpy 2

    NumPy 数学函数 NumPy 提供了标准的三角函数:sin().cos().tan(import numpy as np a = np.array([0,30,45,60,90])print (' ...

  8. numpy学习笔记(四)

    (1)NumPy - 矩阵库 NumPy 包包含一个 Matrix库numpy.matlib.此模块的函数返回矩阵而不是返回ndarray对象. matlib.empty()返回一个新矩阵,而不初始化 ...

  9. NumPy教程目录

    NumPy Ndarray对象 NumPy数组属性 NumPy数据类型 NumPy数组创建例程 NumPy来自现有数据的数组 NumPy来自数值范围的数组 NumPy切片和索引 NumPy - 高级索 ...

随机推荐

  1. 读 下一代SOA 服务技术与面向服务简明指南

    面向服务的八个设计原则 标准化服务合同 在同一个服务仓库中的服务都符合同样的合同设计标准 服务松耦合 服务合同施加了消费者低耦合的要求,而它们自己也与周围的环境脱钩 服务抽象 服务合同只包含基本信息, ...

  2. c# Log4net的结构

    log4net 有四种主要的组件,分别是Logger(记录器), Repository(库), Appender(附着器)以及 Layout(布局).

  3. delphi ----寻找控件,以字符串类型的名称控件

    vari :Integer;beginfor i := 1 to 10 do(FindComponent('Edit'+inttostr(i)) as TEdit).Text := inttostr( ...

  4. druid

    实时分析型数据库 Druid | Interactive Analytics at Scale http://druid.io/ Druid is primarily used to store, q ...

  5. IO流入门-第四章-FileReader

    FileReader基本用法和方法示例 /* java.io.Reader java.io.InputStreamReader 转换流(字节输入流---->字符输入流) java.io.File ...

  6. mysql乐观锁总结和实践(转)

    原文:mysql乐观锁总结和实践 上一篇文章<MySQL悲观锁总结和实践>谈到了MySQL悲观锁,但是悲观锁并不是适用于任何场景,它也有它存在的一些不足,因为悲观锁大多数情况下依靠数据库的 ...

  7. Python中的不同进制的语法和转换

    不同进制的书写方式 八进制(Octal) 0o377 十六进制(Hex) 0xFF 二进制(Binary) 0b11111111 不同进制之间的转换 python提供了三个内置的函数,能够用来在不同进 ...

  8. java要注意的问题1

    一.优先返回空集合而非null 如果程序要返回一个不包含任何值的集合,确保返回的是空集合而不是null.这能节省大量的”if else”检查. public class getLocationName ...

  9. PL/SQL编程—包

    1.PLSQL 中的包就相当于java中的package,主要好处有(1)防止命名污染,(2)功能统一,(3)允许重载,(4)可以隐藏核心代码,(5)最重要的就是断开依赖链. 2.对于一个程序需要大量 ...

  10. SpringMVC学习大纲

    PartA: 1.SpringMVC介绍 2.入门程序 3.SpringMVC架构讲解 a) 框架结构 b) 组件说明 4.SpringMVC整合MyBatis 5.参数绑定 a) SpringMVC ...