NumPy线性代数
NumPy - 线性代数
NumPy 包包含numpy.linalg模块,提供线性代数所需的所有功能。 此模块中的一些重要功能如下表所述。
| 序号 | 函数及描述 |
|---|---|
| 1. | dot 两个数组的点积 |
| 2. | vdot 两个向量的点积 |
| 3. | inner 两个数组的内积 |
| 4. | matmul 两个数组的矩阵积 |
| 5. | determinant 数组的行列式 |
| 6. | solve 求解线性矩阵方程 |
| 7. | inv 寻找矩阵的乘法逆矩阵 |
numpy.dot()
此函数返回两个数组的点积。 对于二维向量,其等效于矩阵乘法。 对于一维数组,它是向量的内积。 对于 N 维数组,它是a的最后一个轴上的和与b的倒数第二个轴的乘积。
import numpy.matlib
import numpy as np
a = np.array([[1,2],[3,4]])
b = np.array([[11,12],[13,14]])
np.dot(a,b)
输出如下:
[[37 40]
[85 92]]
要注意点积计算为:
[[1*11+2*13, 1*12+2*14],[3*11+4*13, 3*12+4*14]]
numpy.vdot()
此函数返回两个向量的点积。 如果第一个参数是复数,那么它的共轭复数会用于计算。 如果参数id是多维数组,它会被展开。
例子
import numpy as np
a = np.array([[1,2],[3,4]])
b = np.array([[11,12],[13,14]])
print np.vdot(a,b)
输出如下:
130
注意:1*11 + 2*12 + 3*13 + 4*14 = 130。
numpy.inner()
此函数返回一维数组的向量内积。 对于更高的维度,它返回最后一个轴上的和的乘积。
例子
import numpy as np
print np.inner(np.array([1,2,3]),np.array([0,1,0]))
# 等价于 1*0+2*1+3*0
输出如下:
2
例子
# 多维数组示例
import numpy as np
a = np.array([[1,2], [3,4]])
print '数组 a:'
print a
b = np.array([[11, 12], [13, 14]])
print '数组 b:'
print b
print '内积:'
print np.inner(a,b)
输出如下:
数组 a:
[[1 2]
[3 4]]
数组 b:
[[11 12]
[13 14]]
内积:
[[35 41]
[81 95]]
上面的例子中,内积计算如下:
1*11+2*12, 1*13+2*14
3*11+4*12, 3*13+4*14
numpy.matmul
numpy.matmul()函数返回两个数组的矩阵乘积。 虽然它返回二维数组的正常乘积,但如果任一参数的维数大于2,则将其视为存在于最后两个索引的矩阵的栈,并进行相应广播。
另一方面,如果任一参数是一维数组,则通过在其维度上附加 1 来将其提升为矩阵,并在乘法之后被去除。
例子
# 对于二维数组,它就是矩阵乘法
import numpy.matlib
import numpy as np
a = [[1,0],[0,1]]
b = [[4,1],[2,2]]
print np.matmul(a,b)
输出如下:
[[4 1]
[2 2]]
例子
# 二维和一维运算
import numpy.matlib
import numpy as np
a = [[1,0],[0,1]]
b = [1,2]
print np.matmul(a,b)
print np.matmul(b,a)
输出如下:
[1 2]
[1 2]
例子
# 维度大于二的数组
import numpy.matlib
import numpy as np
a = np.arange(8).reshape(2,2,2)
b = np.arange(4).reshape(2,2)
print np.matmul(a,b)
输出如下:
[[[2 3]
[6 11]]
[[10 19]
[14 27]]]
numpy.linalg.det()
行列式在线性代数中是非常有用的值。 它从方阵的对角元素计算。 对于 2×2 矩阵,它是左上和右下元素的乘积与其他两个的乘积的差。
换句话说,对于矩阵[[a,b],[c,d]],行列式计算为ad-bc。 较大的方阵被认为是 2×2 矩阵的组合。
numpy.linalg.det()函数计算输入矩阵的行列式。
例子
import numpy as np
a = np.array([[1,2], [3,4]])
print np.linalg.det(a)
输出如下:
-2.0
例子
b = np.array([[6,1,1], [4, -2, 5], [2,8,7]])
print b
print np.linalg.det(b)
print 6*(-2*7 - 5*8) - 1*(4*7 - 5*2) + 1*(4*8 - -2*2)
输出如下:
[[ 6 1 1]
[ 4 -2 5]
[ 2 8 7]]
-306.0
-306
numpy.linalg.solve()
numpy.linalg.solve()函数给出了矩阵形式的线性方程的解。
考虑以下线性方程:
x + y + z = 6
2y + 5z = -4
2x + 5y - z = 27
可以使用矩阵表示为:

如果矩阵成为A、X和B,方程变为:
AX = B
或
X = A^(-1)B
numpy.linalg.inv()
我们使用numpy.linalg.inv()函数来计算矩阵的逆。 矩阵的逆是这样的,如果它乘以原始矩阵,则得到单位矩阵。
例子
import numpy as np
x = np.array([[1,2],[3,4]])
y = np.linalg.inv(x)
print x
print y
print np.dot(x,y)
输出如下:
[[1 2]
[3 4]]
[[-2. 1. ]
[ 1.5 -0.5]]
[[ 1.00000000e+00 1.11022302e-16]
[ 0.00000000e+00 1.00000000e+00]]
例子
现在让我们在示例中创建一个矩阵A的逆。
import numpy as np
a = np.array([[1,1,1],[0,2,5],[2,5,-1]])
print '数组 a:'
print a
ainv = np.linalg.inv(a)
print 'a 的逆:'
print ainv
print '矩阵 b:'
b = np.array([[6],[-4],[27]])
print b
print '计算:A^(-1)B:'
x = np.linalg.solve(a,b)
print x
# 这就是线性方向 x = 5, y = 3, z = -2 的解
输出如下:
数组 a:
[[ 1 1 1]
[ 0 2 5]
[ 2 5 -1]]
a 的逆:
[[ 1.28571429 -0.28571429 -0.14285714]
[-0.47619048 0.14285714 0.23809524]
[ 0.19047619 0.14285714 -0.0952381 ]]
矩阵 b:
[[ 6]
[-4]
[27]]
计算:A^(-1)B:
[[ 5.]
[ 3.]
[-2.]]
结果也可以使用下列函数获取
x = np.dot(ainv,b)
NumPy线性代数的更多相关文章
- 19、NumPy——线性代数
NumPy 线性代数 NumPy 提供了线性代数函数库 linalg,该库包含了线性代数所需的所有功能,可以看看下面的说明: 函数 描述 dot 两个数组的点积,即元素对应相乘. vdot 两个向量的 ...
- Numpy 线性代数
Numpy 提供了线性代数库 linalg , 该库包含了线性代数所需的所有功能,可以看卡下面的说明: 函数 描述 dot 两个数组的点积, 即元素对应相乘 vdot 两个向量的点积 inner 两个 ...
- 吴裕雄--天生自然Numpy库学习笔记:NumPy 线性代数
import numpy.matlib import numpy as np a = np.array([[1,2],[3,4]]) b = np.array([[11,12],[13,14]]) p ...
- [转]numpy线性代数基础 - Python和MATLAB矩阵处理的不同
转自:http://blog.csdn.net/pipisorry/article/details/45563695 http://blog.csdn.net/pipisorry/article/de ...
- Python Numpy线性代数操作
Python Numpy线性代数函数操作 1.使用dot计算矩阵乘法 import numpy as np from numpy import ones from __builtin__ import ...
- Numpy Study 1
Numpy 使用1 1.Numpy创建数组 import numpy as np 创建数组有以下方式: (1).arange numpy.arange([start, ]stop, [step, ]d ...
- 数据分析 大数据之路 四 numpy 2
NumPy 数学函数 NumPy 提供了标准的三角函数:sin().cos().tan(import numpy as np a = np.array([0,30,45,60,90])print (' ...
- numpy学习笔记(四)
(1)NumPy - 矩阵库 NumPy 包包含一个 Matrix库numpy.matlib.此模块的函数返回矩阵而不是返回ndarray对象. matlib.empty()返回一个新矩阵,而不初始化 ...
- NumPy教程目录
NumPy Ndarray对象 NumPy数组属性 NumPy数据类型 NumPy数组创建例程 NumPy来自现有数据的数组 NumPy来自数值范围的数组 NumPy切片和索引 NumPy - 高级索 ...
随机推荐
- 9.JavaScript简单计算器的实现
1.难点,怎么获取标签的值,注意点,获取到的值都是string类型,还要转换 var num1 = parseInt(document.getElementById("num1") ...
- Druid对数据库密码加密的坑
背景: 在对已有项目搭建本地环境,修改了本地ip端口和数据库帐号密码(使用了明文). 然后项目一直跑不起来,还抛出各种异常,经过分析发现主要错在这里:druid java.lang.IllegalAr ...
- windows 系统如何安装 mysql 8.0.15 数据库?
windows 系统如何安装 mysql 8.0.15 数据库? 1. 下载安装包 下载地址:https://cdn.mysql.com//Downloads/MySQL-8.0/mysql-8.0. ...
- 利用Django中间件middleware解决用户未登录问题(转)
add by zhj: Django的中间件一般用于处理通用性的问题,分为五种,按处理顺序为request_middleware,view_middleware,exception_middlewar ...
- Django组件 - cookie、session、用户认证组件
一.cookie 1.会话跟踪技术 1)什么是会话跟踪技术 我们需要先了解一下什么是会话!可以把会话理解为客户端与服务器之间的一次会晤,在一次会晤中可能会包含多次请求和响应.例如你给10086打个电话 ...
- 10款最佳SQL Server服务器监控工具
转自:http://server.51cto.com/sSecurity-587355.htm 推荐 | 10款最佳SQL Server服务器监控工具 服务器是网络中最重要的资源之一,SQL Serv ...
- use html5 video tag with MSE for h264 live streaming
本编博客记录桌面虚拟化移动端预研. 完整demo: https://github.com/MarkRepo/wfs.js 常见的直播方案有RTMP RTSP HLS 等等, 由于这些流都需要先传输到服 ...
- 转:zero length array问题
单看这文章的标题,你可能会觉得好像没什么意思.你先别下这个结论,相信这篇文章会对你理解C语言有帮助.这篇文章产生的背景是在微博上,看到@Laruence同学出了一个关于C语言的题,微博链接.微博截图如 ...
- 08 Spring框架 AOP (一)
首先我们先来介绍一下AOP: AOP(Aspect Orient Programming),面向切面编程,是面向对象编程OOP的一种补充.面向对象编程是从静态角度考虑程序的结构,面向切面编程是从动态的 ...
- Java程序设计专题