题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3566

一眼看上去高斯消元。n^3不行。

竟然直接去看了TJ。发现树型dp。一下想到了自己还没做出的bzoj2878。当然是up和down啦~

然后无限TLE。看看TJ,发现:

  这个不能直接加的!应该是  自己不亮的概率*它让自己亮的概率  累加到原来亮的概率上!

然后还是无限TLE。

最后发现是N=5e5。应该是N=5e5+5。

PS:因为是那样加的,所以算up的时候不好减;学题解写了前缀和。仔细一想也可以随便解一次方程得出减后的值。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=5e5+;
int n,head[N],xnt,stack[N],top;
double e[N],q[N],up[N],dn[N],ans,sum[][N];//
struct Edge{
int next,to;double w;
Edge(int n=,int t=,double k=0.0):next(n),to(t),w(k) {}
}edge[N<<];
void add(int x,int y,double z)
{
edge[++xnt]=Edge(head[x],y,z);head[x]=xnt;
edge[++xnt]=Edge(head[y],x,z);head[y]=xnt;
}
double pls(double x,double y){return x+y-x*y;}//x+(1-x)*y
void dfs1(int cr,int f)
{
for(int i=head[cr],v;i;i=edge[i].next)
if((v=edge[i].to)!=f)
{
dfs1(v,cr);
dn[cr]=pls(dn[cr],pls(dn[v],q[v])*edge[i].w);
}
}
void dfs2(int cr,int f)
{
up[cr]=pls(up[cr],q[cr]);
ans+=pls(up[cr],dn[cr]);
top=;
for(int i=head[cr];i;i=edge[i].next)
if(edge[i].to!=f)
{stack[++top]=edge[i].to;e[top]=edge[i].w;}
sum[][]=;sum[][top+]=;//
for(int i=;i<=top;i++)sum[][i]=pls(sum[][i-],pls(dn[stack[i]],q[stack[i]])*e[i]);
for(int i=top;i;i--)sum[][i]=pls(sum[][i+],pls(dn[stack[i]],q[stack[i]])*e[i]);
for(int i=;i<=top;i++)up[stack[i]]=pls(pls(sum[][i-],sum[][i+]),up[cr])*e[i];
for(int i=head[cr];i;i=edge[i].next)
if(edge[i].to!=f)dfs2(edge[i].to,cr);
}
int main()
{
scanf("%d",&n);int x,y;double z;
for(int i=;i<n;i++)
{
scanf("%d%d%lf",&x,&y,&z);
add(x,y,z/);
}
for(int i=;i<=n;i++)scanf("%lf",&q[i]),q[i]/=;
dfs1(,);dfs2(,);
printf("%.6lf\n",ans);
return ;
}

bzoj 3566 [SHOI2014]概率充电器——树型的更多相关文章

  1. BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]

    3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...

  2. BZOJ 3566: [SHOI2014]概率充电器( 树形dp )

    通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...

  3. bzoj 3566: [SHOI2014]概率充电器

    Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器:"采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率 ...

  4. ●BZOJ 3566 [SHOI2014]概率充电器

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3566题解: 概率dp,树形dp 如果求出每个点被通电的概率t, 那么期望答案就是t1×1+t ...

  5. BZOJ.3566.[SHOI2014]概率充电器(概率DP 树形DP)

    BZOJ 洛谷 这里写的不错,虽然基本还是自己看转移... 每个点的贡献都是\(1\),所以直接求每个点通电的概率\(F_i\),答案就是\(\sum F_i\). 把\(F_x\)分成:父节点通电给 ...

  6. bzoj 3566: [SHOI2014]概率充电器 数学期望+换根dp

    题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数. 期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 ...

  7. bzoj 3566: [SHOI2014]概率充电器【树形概率dp】

    设g[u]为这个点被儿子和自己充上电的概率,f[u]为被儿子.父亲和自己充上电的概率 然后根据贝叶斯公式(好像是叫这个),1.P(A+B)=P(A)+P(B)-P(A)*P(B),2.P(A)=(P( ...

  8. BZOJ 3566 [SHOI2014]概率充电器 ——期望DP

    期望DP. 补集转化,考虑不能被点亮的情况, 然后就是三种情况,自己不能亮,父亲不能点亮它,儿子不能点亮它. 第一次计算比较容易,第二次计算的时候需要出去第一次的影响,因为一条线只能传导一次 #inc ...

  9. 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

随机推荐

  1. MYSQL提权的各种姿势

    一.利用mof提权 前段时间Kingcope大牛发布了mysql远程提权0day,剑心牛对MOF利用进行了分析,如下: Windows 管理规范 (WMI) 提供了以下三种方法编译到 WMI 存储库的 ...

  2. 深入理解Java虚拟机(1)--Java内存区域

    运行时数据区域 Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域.这些区域有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机进程的启动而存在,有些区域则是依赖用 ...

  3. Dijkstra算法 - 最短路径算法

    2017-07-26 22:30:45 writer:pprp dijkstra算法法则:设置顶点集合S,首先将起始点加入该集合,然后根据起始点到其他顶点的路径长度, 选择路径长度最小的顶点加入到集合 ...

  4. android studio 更新Gradle版本方法

    在导入其他项目时,经常由于gradle版本不一致而导致不能编译 解决方法: 第一步: 按提示点击让它下载,其实目的并不是要它下载,因为这样速度会很慢,这样做只是为了让它在本地创建相应的目录结构 第二步 ...

  5. 读取和修改xml

    如有一个xml文件DownData.xml,内容如下 <?xml version="1.0" standalone="yes"?> <Root ...

  6. scala学习手记28 - Execute Around模式

    我们访问资源需要关注对资源的锁定.对资源的申请和释放,还有考虑可能遇到的各种异常.这些事项本身与代码的逻辑操作无关,但我们不能遗漏.也就是说进入方法时获取资源,退出方法时释放资源.这种处理就进入了Ex ...

  7. JNI_Z_02_函数参数_JNIEnv*_jclass_jobject

    1. 1.1.JNIEXPORT void JNICALL Java_包名_类名_函数名01(JNIEnv * env, jclass clazz) // Java代码中的 静态函数 1.2.JNIE ...

  8. pandas 数据处理

    1. 查看数值数据的整体分布情况 datafram.describe() 输出: agecount 1463.000000mean 22.948052std 8.385384min 13.000000 ...

  9. jquery attr与prop的区别与联系

    最近开发中发现用attr无法设置checkbox的选中事件,在网上找了下说要用prop,所以总结下两者的区别. 1.操作的对象不同 attr:操作的是HTML文档节点属性 prop:操作的是js对象属 ...

  10. c语言中的string

    1. strlen(char const* s); 函数传入的是c风格字符串(即以‘\0’结尾的字符数组),返回的长度为size_t(即unsigned int),其长度不包括'\0'. 2. str ...