Bzoj4873 [SXOI2017]寿司餐厅
Time Limit: 20 Sec Memory Limit: 512 MB
Submit: 64 Solved: 45
Description
Input
Output
输出共一行包含一个正整数,表示Kiana能获得的总美味度减去花费的总钱数的最大值。
Sample Input
2 3 2
5 -10 15
-10 15
15
Sample Output
【样例1说明】
在这组样例中,餐厅一共提供了3份寿司,它们的代号依次为a1=2,a2=3,a3=2,计算价格时的常数m=1。在保证每
次取寿司都能获得新的美味度的前提下,Kiana一共有14种不同的吃寿司方案:
1.Kiana一个寿司也不吃,这样她获得的总美味度和花费的总钱数都是0,两者相减也是0;
2.Kiana只取1次寿司,且只取第1个寿司,即她取寿司的情况为{[1,1]},这样获得的总美味度为5,花费的总钱数
为1-2^2+1*2=6,两者相减为-1;
3.Kiana只取1次寿司,且只取第2个寿司,即她取寿司的情况为{[2,2]},这样获得的总美味度为-10,花费的总钱
数为1-3^2+1*3=12,两者相减为-22;
4.Kiana只取1次寿司,且只取第3个寿司,即她取寿司的情况为{[3,3]},这样获得的总美味度为15,花费的总钱数
为1*2^2+1*2=6,两者相减为9;
5.Kiana只取1次寿司,且取第1,2个寿司,即她取寿司的情况为{[1,2]},这样获得的总美味度为5+(-10)+(-10)=-1
5,花费的总钱数为(1-2^2+1*2)+(1-3^2+1*3)=18,两者相减为-33;
6.Kiana只取1次寿司,且取第2,3个寿司,即她取寿司的情况为{[2,3]},这样获得的总美味度为(-10)+15+15=20,
花费的总钱数为(1-2^2+1*2)+(1*3^2+1*3)=18,两者相减为2;
7.Kiana只取1次寿司,且取第1,2,3个寿司,即她取寿司的情况为{[1,3]},这样获得的总美味度为5+(-10)+15+(-1
0)+15+15=30,花费的总钱数为(1*2^2+2*2)+(1*3^2+1*3)=20,两者相减为10。
8.Kiana取2次寿司,第一次取第1个寿司,第二次取第2个寿司,即她取寿司的情况为{[1,1],[2,2]},这样获得的
总美味度为5+(-10)=-5,花费的总钱数为(1*2^2+1*2)+(1*3^2+1*3)=18,两者相减为-23;
9.Kiana取2次寿司,第一次取第1个寿司,第二次取第3个寿司,即她取寿司的情况为{[1,1],[3,3]},这样获得的
总美味度为5+15=20,花费的总钱数为1*2^2+2*2=8,两者相减为12;
10.Kiana取2次寿司,第一次取第2个寿司,第二次取第3个寿司,即她取寿司的情况为{[2,2],[3,3]},这样获得的
总美味度为(-10)+15=5,花费的总钱数为(1*2^2+1*2)+(1*3^2+1*3)=18,两者相减为-13;
11.Kiana取2次寿司,第一次取第1,2个寿司,第二次取第3个寿司,即她取寿司的情况为{[1,2],[3,3]},这样获得
的总美味度为5+(-10)+(-10)+15=0,花费的总钱数为(1*2^2+2*2)+(1*3^2+1*3)=20,两者相减为-20;
12.Kiana取2次寿司,第一次取第1个寿司,第二次取第2,3个寿司,即她取寿司的情况为{[1,1],[2,3]},这样获得
的总美味度为5+(-10)+15+15=25,花费的总钱数为(1-22+2-2)+(1-32+1-3)=20,两者相减为5;
13.Kiana取2次寿司,第一次取第1,2个寿司,第二次取第2,3个寿司,即她取寿司的情况为{[1,2],[2,3]},这样获
得的总美味度为5+(-10)+15+(-10)+15=15,花费的总钱数为(1*2^2+2*2)+(1*3^2+1*3)=20,两者相减为-5;
14.Kiana取3次寿司,第一次取第1个寿司,第二次取第2个寿司,第三次取第3个寿司,即她取寿司的情况为{[1,1]
,[2,2],[3,3]},这样获得的总美味度为5+(-10)+15=10,花费的总钱数为(1*2^2+2*2)+(1*3^2+1*3)=20,两者相减
为-10。
所以Kiana会选择方案9,这时她获得的总美味度减去花费的总钱数的值最大为12。
HINT
Source
图论 网络流 最大权闭合子图
题面这么这么长,看着很恶心很码农对不对?
于是考场上博主写了个暴力就去调T2,没敢再看
离结束30分钟的时候,觉得T2实在调不出了,又回来看这题。
WTF这不是最大权闭合子图嘛
于是花式建边:
1、对于所有的$(i,j)$区间收益,将它们各自看做一个点,若权值$mp$为正,从源点连过来,容量为$mp$,若权值为负,连到汇点去,容量为$-mp$
2、对于所有的$(i,j)$区间收益,向区间内包括的i到j号寿司连边,容量为$INF$,表示必须选对应的寿司才能选这个区间
3、对于所有的寿司类型$w[i]$,为它们各自开一个点,向汇点T连边,容量为$m*w[i]*w[i]$
4、对于1~n每一个寿司,向它们所属的类型$w[i]$连边,容量为$INF$;向T连边,容量为$C[i]$
5、对于所有的$(i,j)$区间,向$(i+1,j)$和$(i,j-1)$连边,容量为INF,表示选了大区间肯定得选被大区间包含的小区间
然后跑最小割就可以了。
在最后的30分钟里,博主飚了一波手速,用了15分钟敲完了网络流的板子和建边的部分,一跑数据发现错了。为了求稳,用最后的时间检查了各种文件操作,最后交了20分暴力。
考后看代码发现建边的时候没想到第5种依赖关系。
蛤蛤蛤蛤蛤
UPD:代码交到B站,跑了800+ms,一看别人都是100+,什么鬼?试着优化了一波,卡到了70+ms,status里成功rank2。
事实证明Dinic要想跑得快,BFS时分层的d[]数组一定要卡到刚好够用才行,不然时间全用在memset上了
另外有一个建边小优化(109~113行)
/*by SilverN*/
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<queue>
#define LL long long
using namespace std;
const int INF=0x3f3f3f3f;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct edge{
int u,v,nxt,f;
}e[mxn<<];
int hd[mxn],mct=;
inline void add_edge(int u,int v,int f){
e[++mct].v=v;e[mct].u=u;e[mct].nxt=hd[u];e[mct].f=f;hd[u]=mct;return;
}
void insert(int u,int v,int f){
// printf("%d to %d f:%d\n",u,v,f);
add_edge(u,v,f); add_edge(v,u,);
return;
}
int S,T;
int d[];
bool BFS(){
memset(d,,sizeof d);
queue<int>q;
d[S]=;
q.push(S);
while(!q.empty()){
int u=q.front();q.pop();
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(!d[v] && e[i].f){
d[v]=d[u]+;
q.push(v);
}
}
}
return d[T];
}
int DFS(int u,int lim){
// printf("dfs:%d %d\n",u,lim);
if(u==T)return lim;
int f=,tmp;
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(d[v]==d[u]+ && e[i].f && (tmp=DFS(v,min(lim,e[i].f)))){
e[i].f-=tmp;
e[i^].f+=tmp;
lim-=tmp;
f+=tmp;
if(!lim)return f;
}
}
d[u]=;
return f;
}
int Dinic(){
int res=;
while(BFS())res+=DFS(S,INF);
return res;
}
int n,m;
int a[];
int mp[][];
int id[][],ict=;
int idw[];
bool vis[];
LL smm=;
void Build(){
S=;
for(int i=;i<=n;i++){
for(int j=i;j<=n;j++){
id[i][j]=++ict;
}
}
for(int i=;i<=n;i++){
if(!vis[a[i]]){
vis[a[i]]=;
idw[a[i]]=++ict;
}
}
T=ict+n+;
// printf("S:%d T:%d\n",S,T);
memset(vis,,sizeof vis);
for(int i=;i<=n;i++){
if(!vis[a[i]]){
vis[a[i]]=;
insert(idw[a[i]],T,m*a[i]*a[i]);
}
}
for(int i=;i<=n;i++){//zhonglei
insert(ict+i,idw[a[i]],INF);
insert(ict+i,T,a[i]);
}
for(int i=;i<=n;i++){
for(int j=i;j<=n;j++){
if(mp[i][j]>){
smm+=mp[i][j];
insert(S,id[i][j],mp[i][j]);
/* for(int k=i;k<=j;k++){
insert(id[i][j],ict+k,INF);
}*/
insert(id[i][j],ict+i,INF);
insert(id[i][j],ict+j,INF);
}
else if(mp[i][j]<){
insert(id[i][j],T,-mp[i][j]);
/* for(int k=i;k<=j;k++){
insert(id[i][j],ict+k,INF);
}*/
insert(id[i][j],ict+i,INF);
insert(id[i][j],ict+j,INF);
}
if(i!=j){
insert(id[i][j],id[i+][j],INF);
insert(id[i][j],id[i][j-],INF);
}
}
}
return ;
}
int main(){
int i,j;
n=read();m=read();
for(int i=;i<=n;i++)a[i]=read();
for(i=;i<=n;i++)
for(j=i;j<=n;j++)
mp[i][j]=read();
Build();
int res=Dinic();
smm-=res;
printf("%lld\n",smm);
return ;
}
Bzoj4873 [SXOI2017]寿司餐厅的更多相关文章
- 【最大权闭合子图】bzoj4873 [Shoi2017]寿司餐厅
4873: [Shoi2017]寿司餐厅 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 369 Solved: 256[Submit][Status ...
- BZOJ4873[Shoi2017]寿司餐厅——最大权闭合子图
题目描述 Kiana最近喜欢到一家非常美味的寿司餐厅用餐.每天晚上,这家餐厅都会按顺序提供n种寿司,第i种寿司有一个 代号ai和美味度di,i,不同种类的寿司有可能使用相同的代号.每种寿司的份数都是无 ...
- BZOJ4873 LuoguP3749 寿司餐厅
题面太长,请诸位自行品尝—>寿司餐厅 分析: 首先题目中给了限制条件,假如选了D(i,j)(i<j),那么也就选了D(i+1,j)和D(i,j-1)两个点. 于是我们一下就明白了,哦,最大 ...
- bzoj4873: [Shoi2017]寿司餐厅(最大权闭合子图)
4873: [Shoi2017]寿司餐厅 大难题啊啊!!! 题目:传送门 题解:一眼题是网络流,但还是不会OTZ,菜啊... %题解... 最大权闭合子图!!! 好的...开始花式建边: 1.对于每个 ...
- bzoj4873 [Shoi2017]寿司餐厅
Input 第一行包含两个正整数n,m,分别表示这家餐厅提供的寿司总数和计算寿司价格中使用的常数. 第二行包含n个正整数,其中第k个数ak表示第k份寿司的代号. 接下来n行,第i行包含n-i+1个整数 ...
- BZOJ4873 Shoi2017寿司餐厅(最小割)
选择了某个区间就必须选择其所有子区间,容易想到这是一个最大权闭合子图的模型.考虑将区间按长度分层,相邻层按包含关系连边,区间[i,j]的权值即di,j,其中最后一层表示长度为1的区间的同时也表示寿司本 ...
- BZOJ4873 [Shoi2017]寿司餐厅 【最大权闭合子图】
题目链接 BZOJ4873 题解 题意很鬼畜,就可以考虑网络流[雾] 然后就会发现这是一个裸的最大权闭合子图 就是注意要离散化一下代号 #include<algorithm> #inclu ...
- bzoj4873: [Shoi2017]寿司餐厅(最小割)
传送门 大佬们是怎么一眼看出这是一个最大权闭合子图的……大佬好强->这里 1.把所有区间$(i,j)$看成一个点,如果权值大于0,则从$S$向他连边,容量为权值,否则从它向$T$连边,容量为权值 ...
- 【BZOJ4873】[六省联考2017]寿司餐厅(网络流)
[BZOJ4873][六省联考2017]寿司餐厅(网络流) 题面 BZOJ 洛谷 题解 很有意思的题目 首先看到答案的计算方法,就很明显的感觉到是一个最大权闭合子图. 然后只需要考虑怎么构图就行了. ...
随机推荐
- Unity3d学习日记(四)
跟着Unity的教程做了两天,做成了一个叫作survivalShooter的游戏,感觉还挺有意思的,做好后我就把它挂到了个人网站上. 如果你在我的网站的主页的话,点击这个图片就能跳到游戏界面. ...
- 软工网络15团队作业4——Alpha阶段敏捷冲刺-4
一.当天站立式会议照片: 二.项目进展 昨天已完成的工作: 完成程序副界面的设计与信息的输入统计 明天计划完成的工作: 日期等细致信息的处理 工作中遇到的困难: 对微信小程序开发的代码构成有了一些了解 ...
- 【alpha】Scrum站立会议第1次····10.16
小组名称:nice! 小组成员:李权 于淼 杨柳 刘芳芳 项目内容:约跑app 1.任务进度 成员 已完成 当日要完成 李权 搭建好Android Studio环境 数据库设计 于淼 搭建好Andro ...
- asp.net 间隔一段时间执行某方法
设想网站后台每秒自动更新一下Cache["test"]中的值,通过这个实现就可以完成一些在间隔多少时间更新一下数据库的操作. 1.定义一个事件类BMAEvent,在Processo ...
- P1291 [SHOI2002]百事世界杯之旅
题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯.还不赶 ...
- 【题解】Uoj79一般图最大匹配
带花树裸题,感觉带花树强强……不会的勿看此文,解释的可能不对,只是给自己看的!!!如题,带花树即为求一般图最大匹配算法(匈牙利与dinic为二分图最大匹配).推荐论文:2015年<浅谈图的匹配算 ...
- bzoj 1797: [Ahoi2009]Mincut 最小割 (网络流)
太神了直接看了hzwer的题解,有个新认识,一条路径上满流的一定是这条路径上所有边的最小值. type arr=record toward,next,cap,from:longint; end; co ...
- POJ3261:Milk Patterns——题解
http://poj.org/problem?id=3261 给一个序列,求至少出现 k 次的最长重复子串,这 k 个子串可以重叠. 论文题+傻逼题. 上一道题(POJ1743)会做即可. 还是二分长 ...
- 洛谷 P2324 [SCOI2005]骑士精神 解题报告
P2324 [SCOI2005]骑士精神 题目描述 输入输出格式 输入格式: 第一行有一个正整数T(T<=10),表示一共有N组数据.接下来有T个5×5的矩阵,0表示白色骑士,1表示黑色骑士,* ...
- 2016多校联合训练1 D题GCD (ST表+二分)
暑假颓废了好久啊...重新开始写博客 题目大意:给定10w个数,10w个询问.每次询问一个区间[l,r],求出gcd(a[l],a[l+1],...,a[r])以及有多少个区间[l',r']满足gcd ...