CF911E Stack Sorting
洛谷题目链接:CF911E Stack Sorting
Codeforces题目链接:Stack Sorting
题意翻译
给你一排列的一部分,让你补全整个排列使其字典序最大并且经过一个栈调整顺序之后能够顺序输出
题目描述
Let's suppose you have an array aa , a stack ss (initially empty) and an array bb (also initially empty).
You may perform the following operations until both aa and ss are empty:
- Take the first element of aa , push it into ss and remove it from aa (if aa is not empty);
 - Take the top element from ss , append it to the end of array bb and remove it from ss (if ss is not empty).
 
You can perform these operations in arbitrary order.
If there exists a way to perform the operations such that array bb is sorted in non-descending order in the end, then array aa is called stack-sortable.
For example, [3,1,2][3,1,2] is stack-sortable, because bb will be sorted if we perform the following operations:
- Remove 33 from aa and push it into ss ;
 - Remove 11 from aa and push it into ss ;
 - Remove 11 from ss and append it to the end of bb ;
 - Remove 22 from aa and push it into ss ;
 - Remove 22 from ss and append it to the end of bb ;
 - Remove 33 from ss and append it to the end of bb .
 
After all these operations b=[1,2,3]b=[1,2,3] , so [3,1,2][3,1,2] is stack-sortable. [2,3,1][2,3,1] is not stack-sortable.
You are given kk first elements of some permutation pp of size nn (recall that a permutation of size nn is an array of size nn where each integer from 11 to nn occurs exactly once). You have to restore the remaining n-kn−k elements of this permutation so it is stack-sortable. If there are multiple answers, choose the answer such that pp is lexicographically maximal (an array qq is lexicographically greater than an array pp iff there exists some integer kksuch that for every i<ki<k q_{i}=p_{i}qi=pi , and q_{k}>p_{k}qk>pk ). You may not swap or change any of first kk elements of the permutation.
Print the lexicographically maximal permutation pp you can obtain.
If there exists no answer then output -1.
输入输出格式
输入格式:
The first line contains two integers nn and kk ( 2<=n<=2000002<=n<=200000 , 1<=k<n1<=k<n ) — the size of a desired permutation, and the number of elements you are given, respectively.
The second line contains kk integers p_{1}p1 , p_{2}p2 , ..., p_{k}pk ( 1<=p_{i}<=n1<=pi<=n ) — the first kk elements of pp . These integers are pairwise distinct.
输出格式:
If it is possible to restore a stack-sortable permutation pp of size nn such that the first kk elements of pp are equal to elements given in the input, print lexicographically maximal such permutation.
Otherwise print -1.
输入输出样例
输入样例#1:
5 3
3 2 1
输出样例#1:
3 2 1 5 4
输入样例#2:
5 3
2 3 1
输出样例#2:
-1
输入样例#3:
5 1
3
输出样例#3:
3 2 1 5 4
输入样例#4:
5 2
3 4
输出样例#4:
-1
一句话题意: 给出一个长度为\(n\)的排列的前\(k\)个,你需要构造第\(k+1\)到第\(n\)个使得这些数字按顺序入栈并在入栈后任意时候出栈可以使出栈顺序为\(1\)~\(n\).如果无法构造出这样的排列则输出\(-1\).如果存在多组解则输出字典序最大的那一个.
话说这道题是我在CF上第一道非比赛时A掉的题目,也是第一个超过C题的题目...
题解: 首先考虑判断\(-1\)的情况.其实前\(k\)个已经确定了,那么我们就可以直接从小到大的插入数字并判断.因为我们要求出栈的顺序是从小到大的,所以如果我们从小的开始插入,那么插入这个小数字之后马上就可以弹出栈,这样模拟过一遍之后就可以判断前\(k\)个是否能组成一组合法解.
然后再来考虑这个字典序的问题.既然要求字典序最大,那么显然能放一个大的数字就不能放比它小的.然后我们会发现,如果\(k==0\),那么后面的\(n\)个就可以直接从\(n\)到\(1\)构造. 也就是说,只要我们把前\(k\)个已经固定了的数字全部都能弹出栈之后,那么后面直接降序输出就可以了.
这里我们记录前\(k\)个元素中未被弹出栈的元素的最小值,然后将后来从小到大枚举变成从最小值-1开始枚举直到出现被选用的数字停下就可以了.
如果不懂看一下代码理解一下吧.
#include<bits/stdc++.h>
using namespace std;
const int N=200000+5;
const int inf=2147483647;
int n, k, a[N], vis[N], stk[N], ins[N], top = 0, cnt = 0, mn[N], topmn = 0, len = 0;
//vis记录一个数字是否已经被选用
//mn记录未被选用的数字的最小值(每一个可能成为最小值的数字都要记录进来)
//topmn为mn栈的栈顶指针
//ins记录前k个数字是否已经被弹出栈
//stk模拟放入数字的栈,top是它的栈顶
bool check(){
    int i = 1, pos = 1;
    while(i <= k){
        stk[++top] = a[i], vis[a[i]] = ins[a[i]] = 1, i++;
        while(top && stk[top] == pos) pos++, ins[stk[top--]] = 0;
    }
    for(int j=1;j<=n;j++){//直接从小到大放入数字,能取出就把数字都取出
        if(!vis[j]) stk[++top] = j;
        while(top && stk[top] == pos) ins[stk[top--]] = 0, pos++;
    }
    for(int i=1;i<=n;i++)
        if(ins[i]) return false;//如果仍有数字未被取出,则无法构成合法排列
    return true;
}
void work(){
    int i = 1, pos = 1, st = 0; top = 0, topmn = 0, mn[0] = inf, len = k;
    //cnt记录第1~k个数字中有几个没被弹出栈
    memset(vis, 0, sizeof(vis)); memset(ins, 0, sizeof(ins));
    vis[0] = 1;//重复使用数组需要清空
    //vis[0]=1是为了防止数组判断越界
    for(int j=1;j<=k;j++) st = max(st, a[j]);//st记录最后一个数字被弹出栈的位置,之后的就直接倒序输出就可以了
    while(i <= k){//模拟
        stk[++top] = a[i], vis[a[i]] = ins[a[i]] = 1, cnt++;
        if(mn[topmn] > a[i]) mn[++topmn] = a[i];
        while(top && stk[top] == pos){
            if(mn[topmn] == stk[top]) topmn--;
            pos++, ins[stk[top--]] = 0, cnt--;
        }
        i++;
    }
    while(cnt){
        for(int j=mn[topmn]-1;vis[j] == 0;j--){//注意这里的枚举顺序
            stk[++top] = j, a[++len] = j, vis[j] = 1;
            while(top && stk[top] == pos){
                if(mn[topmn] ==  stk[top]) topmn--;
                if(ins[stk[top]]) ins[stk[top--]] = 0, pos++, cnt--;
                else top--, pos++;
            }
        }
    }
    for(int i=st+1;i<=n;i++) a[i] = n-i+1+st;
    for(int i=1;i<=n;i++) cout << a[i] << ' '; cout << endl;
}
int main(){
    // freopen("data.in", "r", stdin);
    ios::sync_with_stdio(false);
    cin >> n >> k;
    for(int i=1;i<=k;i++) cin >> a[i];
    if(check()) work();
    else cout << -1 << endl;
    return 0;
}
												
											CF911E Stack Sorting的更多相关文章
- Codeforces 911E - Stack Sorting
		
911E - Stack Sorting 思路: 用栈来模拟,能pop就pop,记下一个需要pop的数为temp,那么如果栈非空,栈顶肯定大于temp,那么加入栈 栈顶值-1 到 temp 的值,否则 ...
 - Stack Sorting CodeForces - 911E (思维+单调栈思想)
		
Let's suppose you have an array a, a stack s (initially empty) and an array b (also initially empty) ...
 - 数据结构设计    Stack Queue
		
之前在简书上初步总结过几个有关栈和队列的数据结构设计的题目.http://www.jianshu.com/p/d43f93661631 1.线性数据结构 Array Stack Queue Hash ...
 - Educational Codeforces Round 35
		
Nearest Minimums 相同的数里最小的数里的最小距离 Solution Two Cakes Solution Three Garlands 瞎比试 Solution Inversion C ...
 - C# 集合类 :(Array、 Arraylist、List、Hashtable、Dictionary、Stack、Queue)
		
我们用的比较多的非泛型集合类主要有 ArrayList类 和 HashTable类.我们经常用HashTable 来存储将要写入到数据库或者返回的信息,在这之间要不断的进行类型的转化,增加了系统装箱和 ...
 - [POJ1007]DNA Sorting
		
[POJ1007]DNA Sorting 试题描述 One measure of ``unsortedness'' in a sequence is the number of pairs of en ...
 - URAL(timus) 1280 Topological Sorting(模拟)
		
Topological Sorting Time limit: 1.0 secondMemory limit: 64 MB Michael wants to win the world champio ...
 - Codeforces Round #335 (Div. 2) C. Sorting Railway Cars  连续LIS
		
C. Sorting Railway Cars An infinitely long railway has a train consisting of n cars, numbered from ...
 - hdu 5427 A problem of sorting  水题
		
A problem of sorting Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contest ...
 
随机推荐
- BZOJ 3166 HEOI2013 ALO 可持久化trie+st表
			
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3166(洛谷上也有) 题意概述: 给出一个序列,对于一个区间,其权值为区间中的次大值亦或区 ...
 - js中斜杠转义
			
js中“/”不需要转义. if(myPath.indexOf("/Upload/EmailFile/")!=-1){ alert("有附件!")}
 - TCP 的有限状态机
			
TCP 有限状态机的图中每一个方框都是 TCP 可能具有的状态. 每个方框中的大写英文字符串是 TCP 标准所使用的 TCP 连接状态名. 状态之间的箭头表示可能发生的状态变迁. 箭头旁边的字,表明引 ...
 - Spring管理事务默认回滚的异常
			
一.默认方式 Spring的事务管理默认只对出现运行期异常(java.lang.RuntimeException及其子类),Error进行回滚. 如果一个方法抛出Exception或者Checked异 ...
 - 第20天:京东nav、footer部分制作
			
一.鼠标的4种状态 cursor:pointer; 鼠标变成小手cursor:default;小白cursor:move;移动cursor:text;文本输入 二.网页布局:1.input.butto ...
 - 【bzoj1026】[SCOI2009]windy数  数位dp
			
题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道,在A和B之间,包括A和B,总共有多少个windy数? 输入 包含两个整数 ...
 - NAT穿透(UDP打洞)
			
1.NAT(Network Address Translator)介绍 NAT有两大类,基本NAT和NAPT. 1.1.基本NAT 静态NAT:一个公网IP对应一个内部IP,一对一转换 动态NAT:N ...
 - (一)Redis简介及安装
			
Redis简介 Redis 是一个开源(BSD许可)的,内存中的key-value数据结构存储系统,它可以用作数据库.缓存和消息中间件. Redis具有丰富的数据结构类型.包括字符串(string), ...
 - 源码安装和yum安装的区别。
			
yum是将yum源中别人已经编译好的rpm包下载到本地,然后安装,不需要考虑依赖,主要是方便.源码安装没法人为的控制,安装的版本也很低. 源码安装需要自己编译,安装,编译过程中可以设置参数.可安装的版 ...
 - AtCoder Regular Contest 103 题解
			
C-/\/\/\ #include<algorithm> #include<iostream> #include<cstdlib> #include<ioma ...